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This dissertation addresses the problem of determining

the correct relationship between the statistics of a con-

tinuous random process and the statistics of a discrete

random process used to simulate the continuous random pro-

cess. The findings of this research are directly applica-

ble to the general field of digital simulation of physical

systems described by ordinary differential equations.

It is shown that to ensure a faithful digital simula-

tion of a continuous random process, the noise statistics

of the random number generator must be set to values dras-

tically different from the noise statistics of the contin-

uous random process. Further, it is established that the
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relationship between the continuous and discrete statistics

is a function of the integration method used in the digital

simulation.

The proper functional relationship between the dis- .

crete and continuous noise statistics is derived for

,1, the class of Runge-Kutta integrators,

"- 2. the 4th order Adams-Bashforth integrator, and

3. the Adams-Moulton corrector formula.

The derived relationships are applied to a specific problem

and are demonstrated by simulation. The simulation results

are compared to exact solutions. Additionally, the require-

ment for proper operation of a variable-step-size algorithm

is developed.
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I. INTRODUCTION

The design of modern technological systems is a well

defined logical process involving many phases beginning

with a statement of need and culminating in hardware. The

success of the final product is critically dependent on the

successful completion of each design phase. In each of the

phases, analysis plays a fundamental role, whether the goal

of the analysis is to test the potential payoff of a feasi-

ble solution, or simply to further the engineer's under-

standing of the problem. The importance of an accurate

analysis, regardless of the design phase for which it is

performed, can not be overemphasized.

To perform an accurate analysis, the analyst has a

number of useful and time-proven tools. One of the most

useful tools for analysis is based on the modern engineer's

ability to describe a physical process using mathematical

equations. The implementation of those equations forms a

basis for a simulation of the physical system. That simu-

lation allows the engineer to exercise the model of the

physical system in a controlled manner. Of course, the

accuracy of an analysis performed by simulation is directly

dependent on the accuracy of the assumed mathematical model

of the physical system.

1
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Until recently, simulation was performed primarily on

analog computers. Analog computers consist of a number of

specialized electronic devices that respond to electrical

inputs in a manner analogous to the response of physical

devices to physical inputs. The interconnection of the

analog computer devices in a way that represents the

physical process leads to an analog simulation of the

physical system. Once completed there will be a one-to-one

correspondence between the variables describing the physi-

cal process and the variables of the analog simulation.

This direct correspondence makes the analog simulation an

excellent tool for studying the physical system without

physically realizing that system. However, the initial

cost, the cost of maintenance, the cost of operation and an

inherent difficulty in reprogramming make analog computers

unattractive.

As an alternative, modern digital computers offer easy

reprogramming at relatively low costs. Additionally, digi-

tal computers effectively solve multiple problems simulta-

neously, do not have to be dedicated to simulation and pro-

vide the ability to store vast amounts of data. The com-

bination of computational speed, programming flexibility,

and sophisticated numerical algorithms for the solution of

complex mathematical equations has made simulation via

digital computers a common practice over the last fifteen

years.

* ~W.e,-2~ PAP~~ .,
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Hany physical processes occur in the environment that

can not be precisely modeled in a deterministic manner.

Examples of such processes are wind gusts, electronic sen-

sor noise, future target maneuvers, the weather and the

economy. Although such processes can not be modeled deter-

ministically, they can be modeled as continuous random

processes based on statistical data. To model a physical

process as a random process, one only needs an adequate

statistical representation of the physical process. This

representation can be derived from previous observation

data or simply defined based on knowledge of the physical

limits of the process. Although such a derived or defined

model can not precisely predict the behavior of the physi-

cal system, it can predict the statistical behavior of the

system or, in other words, how the system will behave "on

the average". Modeling the non-deterministic system in

this manner will provide useful information, much more so

than simply ignoring the noisy process. Including such

random models in a simulation will certainly enhance its

accuracy by making it more faithful to the physical system.

Review of Random Variables

Before proceeding further, it will be useful to define

and show a number of useful mathematical properties related

to random variables. To do this, let X be an n-dimensional

vector of random variables. All of the information known

about X will be embodied in its probability density func-
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tion (pdf) or, if the pdf is not available, in its proba-

bility distribution function.El) For convenience, assume

the pdf of X is available and let it be denoted by fK(-).

fx.) can be used to compute the "expected value" of

some function of X, where the "expected value" is a numeri-

cal value obtained by averaging the outcomes of an experi-

ment over an ensemble of trials. Specifically, if the

m-dimensional vector function Z.(') is a function of i such

that

70.) - !E&(.)]

where §-(.) is continuous, then the expectation of L,

denoted as E[Iz, is

Since by definition, the expectation is an integral,

it is a linear operation. Therefore, if

_(') - AZ(') = A-S[x('))

where A is a constant matrix, then

E(L] - E(A7,J - fAA(.VfX (.t)dt - A!( t) f 1(I) dt = AE E(L] (1)

Additionally, if

10(') = Zl(') + 12(') - .21[X(')] + 12[X(')]

then

EEtL] E(Ll+12] f(_1() + 82(V7)]fx(.)dt

= ~(1) f X(.t)dJ +f82 1fX(t)d
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- + E[IZ 2 1 (2)

Particular functions of L are used to characterize

( K 0). The expected value of these particular functions

are called the moments, or statistics, of L. Generally, an

infinite number of moments are needed to completely charac-

terize fx(0). Of special interest in stochastic analyses

are the first two moments of ;. The first moment is called

the mean of & and the second moment is called the autocorre-

lation matrix of I.

To generate the first moment of L or the mean of L,

let 8(X) - x. The mean of I., denoted as &., will be compu-

ted by

IL = EEx] = FTL(L1) d

Note that L is not a random variable, but rather a deter-

ministic quantity. This fact is true for all the statis-

tics of a random variable.(1]

To generate the autocorrelation matrix of &, let

_84.) - &KT, where the superscript-T denotes a vector trans-

pose operation. The autocorrelation matrix of & denoted

as *, will be computed by

* - E(x]- f K(Tf)()dt

A statistic closely related to the autocorrelation

matrix is the covariance matrix, denoted as P. Like the

autocorrelation matrix, the covariance matrix is a second

4*J .. S- ,t~ ~ -'- 4. ~ .- . ' .p .
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moment. P is the second central moment of . The covari-

ance matrix is defined as

P A E[I (L-)(L-) T] 1 - a) (1 - a)Tf(l)ldl
1--

Using the facts that EC*. is a linear operation and *L

is a deterministic quantity, the relationship between * and

P can be derived in a straight forward manner. Consider,

P _ E[(zL-a)(L-I)TI = E[IMT - RT -MXT + MIT]

From equation (2) it is seen that

E[g&Te-XeT-hT+MaT] = E[ZXT] - ECUMT] - E[azT] + E[MRT]

Since I is a deterministic vector, from equation (1) it is

seen that

E( IT) = E(x)IT - MaT;

and ECMUT] - maT.

Using these relationships, then

P - EEZLT] _ T - * E(L]E[xT] (3)

Note that if I - I then P - .

A useful relation is statistical independence. Two

random variables are defined to be statistically indepen-

dent if their joint probability density function is equal

to the product of their individual density functions.

1IL31
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Definition of Independence

Given two random variables, u and v, then u and v are

statistically independent if (2]

fuv(u,v) - fu(u)fv(V)

where

fuv(uv) A Joint pdf of u and v;

fu(U) A pdf of u;

and fv(v) A pdf of v.

Uncorrelated and Orthogonal Random Variables

Two random variables, u and v, are uncorrelated if (2]

E(uv] - E(u)E(v].

They are orthogonal if (2]

E(uv] = 0.

Theorem
If two random variables, u and v, are independent,

they are also uncorrelated.(1l

Proof:

E(uvi - f fuvfuv(uv)dudv = fufu(u)du fvfv(v)dv

- Etu]E(v]

Zhebem 2

If two n-dimensional random variable vectors, I. and y.,

are uncorrelated, then the covariance of their sum equals

the sum of their covariances.(1]



Proof:

+ (--.y))((-Lt) + (V-..))T1  =
E ( (X-lKx) (IL-a~x)T I ÷ E[ I X-MR) (X-My)TI] + E[I (Xv-,y) (L-%)lT I

+ ECI (vTay) (v-ay)T T

but

XnRX)• T= px;

E[( ,-uy) (X7-y)Tj = Py;

EC(LI€ ) (..• ,my)TI - E - Mg .TI - E (;) + M. T - g-

and

E((•-m•,_M.-)T] - E•-€T] - €E(.TJ - EIXyIJ. + ay = 0;

Therefore,

E[((L-mYx) + (v-3y))((-L) + (3v-..))T] - PX + Py

Theorem 2 can easily be extended to provide the relation-

ship that if the random vector,

I X! Ii•=

i-i
then

Px (x) - •= Pu. (4)

Likewise, from equation (1) and Theorem 2, if
K M 2 =Aiwi

ihi

then P =(L) - 2 AiPuiA (5)

Definition of a Stochastic Process

A process that contains an element of chance is for-

mally called a stochastic process. A stochastic process

will be described by some function that contains one or
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more random variables. The statistics of the stochastic

process will be a function of not only the statistics of

its random variables but also the describing function it-

self. Some examples of stochastic processes are

X(t) - A sin(wt) where w is a random variable with a

known pdf.

Y(t) - some noiselike signal with no deterministic

structure.

i(t) - w(t) where w(t) is a random varible with a

uniform distribution.

Inaredients of Stochastic Simulation

Analoa Simulation

In order to include a random process in an analog sim-

ulation, one needs, in addition to the mathematical model

of the process, an electronic device that will generate

wide-bandwidth noise. Wide-bandwidth noise is noise that

contains power components over a very large range of fre-

quencies. Ideally, the noise generator should produce

noise that has a frequency spectrum of constant amplitude

over an infinite range of frequencies. Such noise is said

to have an infinite bandwidth with a constant spectral

density function and is termed "white noise".

The desire to produce white noise comes from the fact

that the mathematics involved with analyzing systems con-

taining white noise is greatly simplified. For instance,

the autocorrelation function, *C(), for a white noise



. • • • -• -. .• • • • • • i•• i-• 4, 4 - -. i .. . . - - - -. • L 4 •"

vector is of the form [3)

*) - Q S(T)

where

8(t) A Dirac delta function

and 0 is the spectral density matrix of the

noise

The Dirac delta function is a defined mathematical function

that has infinite amplitude, zero width, and occurs at

As seen from its autocorrelation function, white noise

is not correlated in time. In other words, knowing the

value of the noise at any time provides no information

concerning the value of the noise at any other time. This

uncorrelatedness-in-time property as well as the constant

spectral amplitude property, vastly simplifies the mathema-

tics involved with processing the noise statistics. Thus,

from a mathematical sense, a white noise model is a very

attractive model. However, white noise is physically not

possible. If this isn't obvious from the fact that it

contains power components at an infinite number of frequen-

cies, consider the argument that white noise changes it's

value by an infinite amount in zero time. One might ask

how such a noise model could be Justifiably used in a

simulation of a real system. There are two Justifications.

First, if a physical noise generator has a fairly flal-

spectral density over a range of frequencies that is much
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greater than the bandwidth of the system that is driven by

the noise source, then the effect of the bandlimited noise

on the system is approximately the same as if it were driv-

en by white noise. Figure 1 demonstrates this point graph-

ically.(1] Second, virtually any spectral density function

can be shaped from a white noise spectral density function

by processing the white noise through a shaping filter.(13

M gAGUIOgu

_IDL-.AJM¥IDTH NOISE

Figure 1. Frequency Spectrums of Interest

Therefore, the model of the true noise source can be simu-

lated by a white noise source driving a shaping filter.

The white noise source would in reality be a wide-bandwidth

noise generator that has a bandwidth much greater than the

bandwidth of the shaping filter. Since an analog simula-

tion uses continuous analog devices and models to simulate

the continuous noise process, there is a one-to-one corre-

spondence between the statistics of the simulated noise

process and the statistics of the actual noise process.
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This one-to-one correspondence is indeed a nice relation-

ship because it precisely defines the required noise sta-

tistics to be used in the -imulation in order to accurately

model the assumed physical noise process. Obviously, it

would be equally attractive if this one-to-one correspon-

dence held for a digital simulation. Unfortunately, it

does not.

Di•ital Simulation

To simulate a continuous random process in a digital

simulation, one needs the same functional ingredients as is

required in an analog simulation; that is, a noise genera-

tor, a shaping filter, and knowledge of the relationship

between the statistics of the continuous noise process and

the statistics of the digital simulation model. Unlike an

analog computer, a digital computer is a device that is

only capable of producing a finite number of conditions or

states. Because a digital computer is a finite state

machine, it is not possible to generate a truly continuous

random process. The best that can be achieved is the

generation of a repeatable sequence of numbers that within

the finite window of a sample space appears to be random.

However, if the sample is large enough, this "random"

sequence of numbers is usually adequate for simulating

continuous noise.
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4ethods for generating random sequences on a digital

computer (commonly called random number generators) are

bountiful. Many of these random number generators provide

excellent and predictable statistical properties. The most

commonly used random number generators produce a random

sequence that has a uniform distribution over some range of

numbers. This uniform distribution can be shaped into most

desired noise distributions through the use of shaping

filter algorithms in much the same way as is done in analog

computers.

The final ingredient needed to simulate continuous

noise in a digital simulation is the knowledge of the rela-

tionship between the statistics of continuous noise process

and the digital or discrete noise process. Unlike in ana-

log simulation, there is not a one-to-one correspondence

between these statistical properties. In fact, this dis-

sertation will show that the relationship is complex and a

factor of not only the continuous noise statistics and the

dynamics of the system, but also of the numerical algor-

ithms used to solve the equations of motion.

The simplest situation in which a relationship would

be required is the case when one is attempting to simulate

a continuously available measurement of a state that is

corrupted by additive white noise. This situation is

described mathematically by

Zc(t) - x(t) + vc(t)

* -- .* * * .



14

where

zc(t) - continuous measurement as a

function of time, t;

x(t) - a deterministic function or state;

and vc(t) - a continuous white noise function.

The discrete measurement equation for this case is

zd(ti) - z(tj) + vd(ti)

where

zd(ti) = discrete measurement taken at

time equal to ti;

x(ti) = the value of x(t) at t = ti;

and Vd(ti) = a discrete noise term applied at

t = ti.

In a simulation that contains this type of model, it

is necessary that the statistics of zd(ti) equal the

statistics of zc(t) evaluated at t - ti, for all ti. Since

x(t) is deterministic and the noise is additive, this re-

quirement will be met if the statistics of vd(ti) equal the

statistics of vc(t) evaluated at t = ti, for all ti.

Haybeck (1] develops the relationship to meet this require-

ment. A summary of Haybeck's development is given below.

Assume the vc(t) is a zero-mean Gaussian noise with

E(vc(t)vc(t+l)] = Rc(T)

where

E(-] denotes the statistical expectation;

Rc - spectral density of vc(t);

' ff a]
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and M(E) denotes the Dirac delta function.

If vd(ti) is a zero-mean Gaussian sequence with

E[Vd 2 (ti)] - Rd(ti) - Rc/Ati (6)

where Ati A ti+l -t

and EfVd(ti)vd(tj)] - 0 for i 0 j

then, in the limit as Ati -# , equation (6) will reach the

strength of RCS(9). Hence, the desired relationship

between the covariance of the random number generator and

the spectral density of the continuous noise process is

given by equation (6). Note that even in this simple case

that includes no dynamics, there is is not a one-to-one

statistical correspondence. Discretization has introduced

a functional relationship between the statistics of the

simulated noise process and the noise process of the simu-

lator. The relationship given by equation (6) is the sim-

plest relationship that will be developed in this study.

When the process equations contain dynamics, the functional

relationships will become more complex and, without simpli-

fying assumptions, will also be explicit functions of the

dynamics.

Dissertation Brief

Specifically, the class of problems that will be ad-

dressed in this dissertation are linear first-order differ-

ential systems that are driven by Gaussian white noise.

Relationships will be derived for the accurate solution of

this class of problems in digital simulations that use a

I

• - .• l - • • • 4t •q. "-5 q " ' .4' " Q • " " • "" • • • " -" " " • '" * " " • -" " • " • " " • • "
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number of popular integration methods. It will be shown

that each integration method yields a different relation-

ship for the noise statistics. It will further be shown

that a number of popular integration methods that are often

preferred in deterministic simulations are impractical for

simulations of stochastic systems.

The general problem will be described and analytically

developed in Chapter II. The necessary functional relation-

ships between the continuous noise process statistics and

the discrete noise statistics for the integrators of

interest will be derived in Chapter III. An error analysis

for the results obtained in Chapter III will be developed

in Chapter IV. The results from this analysis will define

the limits of validity for a simplifying assumption made in

Chapter II. The analytical findings of this research will

be demonstrated through simulation, comparing the numerical

results to known analytical solutions. The simulation

results will be given in Chapter V. The research findings

will be summarized and recommendations will be made in

Chapter VI.

a



II. PROBLEM DESCRIPTION

This research is applied to the analysis of problems

belonging to the class of linear time-invariant stochastic

differential systems. Mathematically, this class of prob-

lems is described by

j(t) = AX(t) + BuJI(t) + BwI(t) (7)

where

X(t) A n-dimensional state vector;

dt(t)

dt

I(t) A p-dimensional deterministic input vector;

V (t) A m-dimensional random input vector;

A A nxn system matrix of constant elements;

Bu nxp input matrix of constant elements;

and Bw A nxm input matrix of constant elements.

For problems in the form of equation (7), the state vector

can be described by the summation of two n-dimensional vec-

tors, one purely deterministic and the other purely

stochastic. Thus,

L(t) = z(t) + i,(t) (8)

where

zu(t) = deterministic state vector

and £.(t) = stochastic state vector.

17
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Substituting equation (8) into equation (7) yields

ju(t) + j,(t) - [Aju(t) + BuI(t)] + [Al(t) + Bwj(t)] (9)

Clearly from equation (9) the problem of analyzing the sys-

tem can be separated into a deterministic analysis problem

and a stochastic analysis problem. Since the stochastic

analysis problem is the one of interest, it will be

assumed, without loss of generality, that .(t) = 0 and

ju() = 0. By making these simplifying assumptions and

dropping the subscripts, one finds the stochastic system

to be described by

i(t) = AX(t) + BK(t) (10)

Since I(t) is a non-deterministic function, equation

(10) can not be solved explicitly. The best that one can

do is solve for the statistics of 1(t), which are determin-

istic quantities. If I(t) is Gaussian, the first-order and

second-order statistics, mean and covariance, fully

describe the statistical properties of y(t).[l,2J Further,

since the system is linear, the statistics of 1(t) will

also be Gaussian.[l] Thus, one only needs to determine the

mean and covariance of ](t) to determine the complete sta-

tistics of X(t). If K(t) is non-Gaussian then higher order

statistics will be needed for a complete statistical de-

scription.[2] However, even for non-Gaussian distributions,

the system analyst is often only interested in determining

the first two statistical orders due to the physical
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meaning of those statistics. For convenience, it will be

assumed that V(t) has a Gaussian distribution.

Determination of the Statistics of the State Vector

Since equation (10) is a stochastic differential equa-

tion, normal solution techniques can not be used to deter-

mine 1(t). Another approach will be used in order to find

the form of X(t) that will allow the determination of the

statistics of &(t). To this end, define a random variable

vector, 1(t), such that

J
P(t) = 1 dl

where I(') is a zero-mean Gaussian white noise vector with

a spectral density matrix equal to 0. P(t) is called a

Weiner or Brownian-motion process.(1,2,31 The statistics

of &(t) can easily be determined. The mean or average of

Brownian-motion is

E[Et(t)] = E[It w() d] = E[K(r)l dI =
0 0

The autocorrelation matrix of &(t) is

E[a(tT(t)] = E [ Jt r d1 JiT(r) dr

= JtJE[.(T9!.T(w)] d'rdr
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As presented in Chapter I, the E[V.(rj)!T(w)] = Q0(1-w) , there-

fore

E t)PT(t)] = JJ ( ) dTdw = Jo de = Qt

Using this defined function, P(t), equation (10) can be

rewritten in another form that can be solved for the statis-

tics of &(t). Since equation (10) is a linear differential

equation in time, it can be rewritten as El]

dL(t) = Ai(t)dt + BdP(t)

This equation can be integrated to yield

i(t) = L(to) + AJt(T) dt + B )

The problem at hand is to determine a stochastic process

V(-) that satisfies this integral equation. In section 4.8

of Maybeck [1], it is shown that the following equation is

such a process.

rt
i(t) = 1(t,to)I)(to) + t(tT)Bdft(T) (11)

Jto

where 1(t,to) is the state transition matrix that satisfies

i(t,tg) = Af(t,tg) and 1(tg,t 0 ) = I, where I is the ident-

ity matrix and A is the system matrix in equation (10).

Note that ;(t) is a stochastic process, thus, its solution

is non-deterministic; however, using the knowledge of the

statistics of P(t), the statistics of 1(t) can be deter-

mined.

a.. . - .- • mm m m i m -J ,• - -. -, - ~
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Mean of the State Vector

The mean of &(t), denoted E(L(t)], is described by

E(L(t)] = f(ttg)E(L(to)J + E[Jt(t,)Bdt(c)]

where j(tto) = (A(t-tS)

= I + A*(t-to) + &2 *(t-tu) 2 + ... (12)

2!

and t and to denote arbitrary values of time. In equation

(12), I is an nxn identity matrix. Since EE[_(t)] = 0, the

stochastic integral is also zero-mean and

E(V(t)] = I(t,to)E[L(to)] (13)

Second Moment

The autocorrelation matrix of x(t) can be determined

using equation (11) and equation (2) to write E[L(t)LT(t)]

as the sum of four separate expectations. Using the defi-

nition of P_(t), L(tg) is independent of P(t). From Theorem

1 and the fact that the mean of the stochastic integral is

*• zero, the expected value of two cross terms is zero. For

example,

EL t(tT)BdP(T)LT(to)I = E[ t,(tT)BdP(T)IE(LT(tg)] = 0

Therefore, the autocorrelation matrix of L(t) will be

E[L(t)XT(t)1 = I(t,t 0 )E[X(t 0 )XT(t 0)j]T(t'to)

+ itf(t,T•)BQ(T)BTjT( t, T)d

S+
4to

..... .... ..
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The covariance of L(t), denoted as P(t), can be de-

rived directly from the autocorrelation matrix of L(t) by

the relationship given in equation (3). Specifically,

E[j(t)LT(t)] = P(t) + E[L(t)]E[LT(t)]

and E[X(tO)XT(tg)3 = P(tg) + E[X(tg)]EC[T(tt)J

Evaluating the autocorrelation matrix of X(t) using these

relationships and equation (13), yields
p(t) = ff(t,tOlp(tO)jTlt, tO)

+ t(t,T)BQ(j)BTjT(t,t) dT (14)
ito

Notice that equation (14) is a deterministic equation as is

equation (13).

Analysis Approach

A stochastic analysis of this system involves solving

for the statistics of X(t); specifically, for the mean and

covariance of X(t). For low-order linear systems, equation

(13) and equation (14) can be solved analytically; but for

large-order linear systems and of course nonlinear systems,

simulationr aLe normai-y used to find the statistics of

X(t). In a digital simulation, a random number generator

is used to generate a random sequence, VD, that will simu-

late 1(t). By repetitively running the simulation using a

large number of sample sequences from the random number

generator and statistically averaging the results, an

approximation of E[E(t)] and P(t) can be generated. This

analysis method is commonly called a Monte Carlo analysis.

*. J .~* t* - _ _ • % . .. ... - g-__ , -. :. .. . . -._ . ' . -. - °..**'-. . ." • • -. .. . .. -. .. " . . ,° - - . - .
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In a digital simulation, X(t) will be represented by a

discrete state vector ZD and the propagation of &(t) will

be approximated by the propagation of XD using discrete

difference equations. In order to insure a faithful simu-

lation, the statistics of XD(tk) must be approximately

equal to the statistics of X(t) evaluated at t = tk for all

t over the range of time of interest. This can be accom-

plished on an incremental basis assuming that the statis-

tics of xD(tg) equal the statistics of X(tg) where to is

some arbitrary initial time. By insuring that the propaga-

tion of the statistics of XD approximates the propagation

of the statistics of & from one update time to the next and

assuming that accumulated errors remain small, then the re-

"quirement for a faithful simulation will be realized.

Using equation (13), the equation that describes the

propagation of the mean of L(t) from t = ti to t = ti+1

where ti+ 1 = ti + h will be

E[E(ti+l)J = 1(hO)E[X(ti)] (15)

Likewise, from equation (14), the covariance of X(t) will

be propagated from t = ti to t = ti+ 1 by

P(ti+I) = 3(h,0)P(ti)jT(h,0)

+ d(h,)BQBT§T(h,T) dl (16)

Develooment of the Discrete System Model

In the digital simulation, the discrete state x would

be propaqated from ti to ti+ 1 = (ti + h) by El]

U,,
U., % " - . % , - " ° ¢ • .. • ' . -o • "- • .' - . . . "., " , . ' ' . % . ,
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]•(ti+1) = 1D(h,0)K0(ti) + BDW_0(ti) (17)

where

ID(',') is a discrete state transition matrix

and BD is a discrete input matrix.

ND(,') will not only be a function of the A matrix in

equation (10) and BD will not only be a function of the A

and B matrices in equation (10), but these two functions

will also be dependent on the integration method used in

the simulation.

Determination of the Discrete State Statistics

Mean of the Discrete State Vector

If the mean of IEO is defined to be zero for all ti,

then, from equation (17), it is seen that the mean of KD

will be propagated from ti to ti+1 by

E(KD(ti+l)] = ID(hO)E[IL(ti)) (18)

Second Moment of the Discrete State Vector

The autocorrelation matrix of j, can be derived direct-

ly from equation (17) by determining E(&j(ti+i)-X_(ti+1 )].

Since the discrete state xo(ti) can not be influenced by the

input gD(ti) (present state conditions can only be influ-

enced by past inputs and initial state conditions), j(ti)

is independent of V.D(ti). Therefore, by Theorem 1 and the

fact that E[y(D(ti)] = 0, the expected value of the two

cross terms will be zero. Thus,

E[&D(ti)FZ(ti)] = E[ID(ti)13(ti)] = 0

- * .. - - .. -*
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and

+ BDQDB3

where 0 D = E(mD(ti)w•_(ti)J for all t 1 .

The discrete covariance matrix, PD(.), can be deter-

mined from the autocorrelation matrix of XD by using the

following relationships

E[ 0L(ti+l)ZS(ti+l)] = PD(ti+l) + E[ED(ti+I)]E[LT(ti+l)]

E[•D(ti)Z(ti)] = PD(ti) + E[;D(ti)]E[KT(ti)]

and E[ED(ti+l)] = fD(hO)E[zD(ti)] = E([D(hO)KD(ti)).

Using these relationships,

PD(ti+l) = ID(h,0)PD(ti)](h,0) + BDQDB6 (19) !
6

Develooment of Conditions for a Faithful Simulation

By direct comparison of equation (18) to equation

(15). it is clear that in order for the propagation of the

mean of the discrete state vector to approximate the propa-

gation of the mean of the continuous state vector, ID(hO)

must be approximately equal to I(hO). This is the same

requirement needed to insure digital simulations of deter-

ministic systems are faithful. Thus, it will be assumed

that the numerical integrator used in the digital simula-

tion will insure that

IED(h,g) = C(h,O)

Making this assumption, a comparison of equation (19) to

equation (16) yields that the propagation of the discrete

covariance will be approximately equal to the propagation
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of the continuous covariance if

BDQDB- = (h,T)BOBTITlhT) dT (20)

Selection of an integration method that will satisfy

AD(h,) z A(h,g) will insure that E([•(ti)1 approximates

EEX(t)] evaluated at t = ti. However, additional require-

ments are needed to ensure that the second-order statistics

are faithfully simulated. Thus, equation (20) describes

the essence of the problem. If 1(..,) is known then the

right side of equation (20) can be solved either in closed

form or numerically. However, in general 1(0.,) will not

be known. Of course, the general case is the one of inter-

est. What is known, in general, is that as h approaches

zero, 1(h,) approaches the identity matrix. In previous

works of this type, this fact was used routinely to approx-

imate the state transition matrix with the identity matrix

in order to evaluate the right side of equation (29).

[1,3,5] At the outset, the analyses developed in this work

will also use this relationship. However, because of the

practical significance of this convenient assumption, later

in the error analyses section, Chapter IV, this assumption

will be fully investigated.

If h is selected reasonably small such that

h*IPmaxl (( 1

where IFmaxl is the magnitude of the largest eigenvalue of

A, then

"r
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N(hf) z I (21)

Using equation (21), evaluation of equation (20) yields

BDQDBZ = hBQBT (22)

In a digital simulation used to perform a Monte Carlo

analysis of this type system, it is necessary to select an

h that will satisfy equation (21) and it is necessary to

adjust the covariance of the random number generator such

that equation (22) is satified. It will be shown in Chap-

ter IV of this dissertation that the need for an exception-

ally small h imposed by equation (21) can be relaxed for

certain integration methods.

One additional problem is that BD, the discrete input

matrix, is not known. BD will be a function of the inte-

gration method used in the simulation. For each integrator

of interest, BD will be determined in order to derive the

necessary conditions that will satisfy equation (22).

Griffith (4] showed that if an Euler integrator, which will

be defined in Chapter III, is used in the simulation, then

BD = hB (23)

He then concluded using equations (22) and (23) that for a

simulation employing an Euler integrator

OD = Q/h (24)

Griffith then applied his analytical findings to a problem

that used an Adams-Bashforth integrator (also to be defined

in Chapter III). Griffith's numerical results seemed to

show that equation (24) was also a valid relationship for

M ama - .ý.(\!Zi( .. * a~ ~* *
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the Adams-Bashforth method. It will be shown analytically

in this work that Griffith's numerical findings are valid

only under very restricted conditions. Further, it will be

shown that each for integration method there exists a

unique function relating the continuous input noise statis-

tics to the random number generator's noise statistics.



III. INTEGRATOR ANALYSES

The numerical algorithms that will be considered in

this study are designed to approximate the solution to or-

dinary differential equations and can be divided into two

major categories; fixed-step methods and multistep methods.

Fixed-step methods utilize derivative information that is

computed or approximated within the current integration

step interval, whereas multistep methods utilize derivative

information accumulated over a number of steps. There are

advantages and disadvantages to each type of integration

method. The type of algorithm that an analyst chooses to

use in a given situation is usually the one that he feels

will provide accurate and timely solutions. Many integra-

tion techniques have been studied in detail to assist the

analyst in making an intelligent choice. However, most of

these studies have been performed with application to de-

terministic systems and not to stochastic systems. This

dissertation shows that when applied to solving stochastic

differential equations, each integration method will affect

the relationship of the noise generator statistics to the

continuous noise process statistics. In this chapter, that

relationship between the statistics will be developed for a

number of widely used integration algorithms.

29
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Fixed-Step (Runae-Kutta) Methods

Given a differential system of the form

1 - (L't) (25)

a general Runge-Kutta method approximates the solution X

at time t - (i+l)h, denoted as xi+1, by (5)

Xi+l - Xi + (U 1m 1 + m2&2 + +-" + jln) (26)

where

=l - h*f(xi , ih) (27)

and

kJ = h*L(Li + aji.j-l,ih + bjh) for J = 2,n (28)

where a1 , otx, aj, bj are dependent on the particular Runge-

Kutta method and j(*,') is defined in equation (25).

Euler Intearator

An Euler integrator can be classified as a Runge-Kutta

integrator of order one. For the system of interest,

f( i,iih) = ALi + BEi (29)

Applying equation (29) to equations (26) - (28) with n = 1,

the Euler integrator will approximate the solution of 1(t)

by

Zi+1 = (I + 4xihA)Li + alhBvDl

where 1-D, is a discrete noise input vector at the evalua-

tion of f(o,-). Note that for al = 1,

(I + o1 hA) = (I + hA) = ID(hO)

where ID(h,O) is a first-order truncation of 1(hO) given

by equation (12). Therefore, the update equation for the

* *- X!62 .~
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Euler integrator can be written as

;Li÷1 = ID(h,g);Li + alhBfto 1  (30)

The discrete autocorrelation matrix for an Euler

integrator can be determined directly from equation (30).

EE(Li+lILT+lJ = AD(hO)E(LiZLTJI(h,9) + uijhBE(vji.Tl(hI

+ ID(h,V)E([LiV.lJalhBT + (alh)2BEIgoI•IlBT

Using the relationship that the statistics of the states at

present time are independent of the statistics of the pres-

ent inputs, and the fact that E(qi] = I for all i, results

in

E(V!ojLT] = ECyal]E[4JT =

and E(XiIZ1] = EELi]E(N51) =

Therefore.

"E-[i+1LT+l] = §D(h,0)E-(L Ii[6(h,0) + (4xlh) 2BE(••- V•lIBT

From the autocorrelation matrix, the covariance matrix can

be determined using the relationships

E[zi+,iLT+1 = PD(ti+l) - E[zi+I]E[;LT+IJ

= PD(ti+1) - ID(hO)E(Xi1E(XT]I(h,0)

and E.(ixT] - PD(ti) - E(xi].(El.

Doing so results in

PD(ti+l) = ID(h,9)PD(ti)IF(hB) + aXh 2 BoDBT (31)

where OD - E(y.DVZ.I. Recognizing that equation (31) is in

the form of equation (19), provides the relationship

BDQDBZ - +~ 2 BQDBT (32)

Equating equation (32) to equation (22) yields the statis-

tical relationship
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QD - Q/(cih) (33)

For a, = 1, equation (33) is the same result that Griffith

derived. (41 Note that equation (33) is independent of the

system dynamics. This is a nice relationship because it

means that equation (33) can be applied to any digital simu-

lation that uses an Euler integrator.

2nd Order Runae-Kutta Intearator

A second-order Runge-Kutta integrator approximates the

solution to L(t) at t = (i+l)h by the folowing algorithm.

XZi + = Xi + ( (Xl l + "12&2) (34)

. where

L, - hf(xi,ih) = h(A&i + Bx 1 ) (35)

and

42 - hl(Xi+aiLsl,(i+bl)h) = h(A(xi+alIl) + BVD 2 )

a MhA + al(hA) 2 1]i + alh2 ABEDI + hBV0 2  (36)

where vDl and ID2 are the discrete noise inputs from the

"random number generator at the respective evaluations of

(.,-). Evaluating equation (34) using (35) and (36) and

combining terms yields

' .x+l = EI + (al+o12 )hA + alcc2 (hA) 2 ]xi

+ h(all + ala 2 hA)B. 1 + a 2 hBWD 2  (37)

The most commonly used 2nd order Runge-Kutta method defines

*1= -2 - 0.5 and a, = b, = 1. With these defined constants

note that

EI + (ci 1+0 2 )hA + alx2 (hA) 2 ] = [I + hA + W.5(hA) 2 ] = AD(h,S)

where AD(h,G) is a second-order truncation of 1(hO) given
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by equation (12). Therefore, equation (37) can be rewrit-

ten as

14i+l = D(hO)Ki + BDl1 + BD29-2 (38)

where

BD1 = h(alI + a,4x2 hA)B

and

BD2 = a2 hB

Since !Di represents a zero-mean white noise sequence,

E[%Diyj] = ExDi1E([jJ] = 0 for all I * J. Further, since

the present state, &i, can not be a function of present or

future inputs, Li is independent of go, and KD2" By the

same procedure used to develop the discrete covariance

equation given by equation (19), equation (38) will be used

to derive the discrete covariance equation for the 2nd

order Runge-Kutta algorithm. That procedure results in

PD(ti+l) - ID(h,6)PD(ti)§(hG)

+ BDQODIB•l + BD2QD2B;2 (39)

where

OD1 - E[gDI•I]

and

OD2 = E[ND24 2J

Note that there are two BDQDB3 terms in equation (39).

This is due to the sampling of the noise generator twice

per update, once per derivative-function evaluation. If it

is assumed that OD is constant over the update interval,

then OD1 = QD2 - QD'

" *A -
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Using the relationship given by equation (5), it is

possible to define

"BDQDB = BDlQDBSl + BD2QDB32

From the definition of BDl and BD2 given in equation (38),

BD1QDB•I = +h 2 BQDBT + ogla2alh 3 (BQDBTAT + ABQDBT)

+ cih 4 (ABQDBTAT)

and BD2QDB32 = cjh2 BQDBT

Therefore, for the 2nd order Runge-Kutta integrator,

BDQDB3 - (c + %J)h2 BQDBT + lza2alh 3(BQDBTAT + ABQDBT)

+ .xh 4 (ABQDBTAT) (40)

Notice that BDQDB3 is a function of the system dynamics,

represented by the A matrix. Since the relationship be-

tween OD and Q will be derived using BDQDB3 in equation

(22), it is desirable to make BDQODB independent of the

dynamics so the relationship between OD and 0 will be

independent of the dynamics. To accomplish this, the same

assumption that was made in arriving at the expression on

the right side of equation (22) will be made again to

obtain an approximation to equation (40) that is indepen-

dent of the dynamics. Specifically, assume that h is

selected reasonably small, such that

BDODB3 z (aj + aj)h 2BQDBT

For a1 - a 2 = 0.5,

BDQDB3 = h2BODBTZ: .(aj)2 = 0S.h 2 BQDBT (41)

From equations (41) and (22), it is seen that for the 2nd
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order Runge-Kutta integrator

OD = 20/h (42)

A comparison of equation (42) to equation (33) indicates

that the relationship between OD and 0 is dependent on the

integration method.

4th Order Runge-Kutta Integrator

A 4th order Runge-Kutta integrator is in the form of

Li+l = Xi + (lIkl + a2&2 + a3•3 + a4K4) (43)

where

kl -- hL(xi,ih);

kL2 = hL(Ii + al&l,(i + bl)h);

=3 - hf(xi + a 2 12,(i + b2)h);

and L4 = hL(Ixi + a 3 1 3 -(i + b 3 )h)

Evaluating the 11i's in equation (43) for the system given

by equation (29) yields

kL = h[A;Li + BxO1 ] (44)

kL2 = h((I + alhA)ALi + ajhABxoI + BI 2] (45)

113 = h[(I + a 2 hA + a 2alh2 A2 )AXi + a 2alh2 A2 BVD1

+ a 2 hABVD 2 + BVD 3] (46)

•4 = h[(I + a 3 hA + a 3 a 2 h 2 A2 + a 3 a 2 alh3 A3 )ALi

+ a 3 a 2alh3 A3 ByjD1 + a 3 a 2 h 2 A2 BID2

+ a 3 hABKD 3 + BI 4 ] (47)

where the jfi's are inputs from the random number generator

at the respective evaluations of L(.,). Substituting

equations (44) - (47) into equation (43) results in
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1.+1 M ((I + (al + 092 + 03 + a4 )hA

+ (alo2 + a2*3 + a 3 c4)h 2A 2

+ (a 2 ala3 + a 3 a 2O94)h 3 A3 + (a 3 a 2 alo)h 4 A4 ]Ji

+ [,1I + alo2hA + a 2 alc3h2 A2

+ a 3 a 2 ajcxh 3 A3 IBjED1

+ [E(2I + a 2cc3 hA + a 3 a 2 caih 2 A2 ]BIED2

+ Ea 3 1 + a 3 a4 hA]BIfl 3 + [o4I]BID 4  (48)

A popular 4th order Runge-Kutta integrator uses l=

a4 - 1/6; o2 = c3= 1/3; al = a 2 = bl = b2 = 1/2; and a 3 =

b3 = 1. Using these constants to evaluate the state tran-

sition part of equation (48) results in

I + hA + 0.5(hA) 2 + (hA) 3 /6 + (hA) 4 /24 = ID(h,O) (49)

Note that equation (49) is a fourth-order truncation of

P(hB) given by equation (12). Using equation (49), equa-

tion (48) can be rewritten as

1i+1 = AD(h-O)Xi + BDlI-l + BD2f2 + BD31D3 + BD41D4 (50)

where

BDl - [alI + alca2 hA + a 2 acc3 h 2 A2 + a 3 a 2 alC4 h 3 A3]B;

BD2 -[2I + a 2 a3 hA + a 3 a 2 a 4 h 2 A2 ]B;

BD3- Ea31 + a 3 q4hA]B;

and BD4  -C[4I]3B

Equation (50) can be used to determine the second

moment function for this algorithm. A number of statisti-

cal independence relationships will simplify the math.

Since the input noise is a zero-mean white noise sequence,

E[IOiV•]J 8 for all i J j. Further, the present state is

S"-:'- ,'.- -.- .- ' ", -
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independent of present and future inputs, therefore,

E[Cxiyk] = 0 for k = 1 to 4. Using these statistical rela-

tionships, the discrete covariance matrix for the 4th order

Runge-Kutta algorithm can be derived from equation (50) by

the same process used to derive equation (19) from equation

* (17). The result is

PD(ti+l) = ED(h,0)PD(ti)f(hf) + BD1QD1B31

+ BD2QD2B62 + BD3QD3BZ3 + BD4QD4BZ4 (51)

where ODk = E[NDk-_•k] for k = 1 to 4.

Note that PD(ti+l) has four BDiQDiBZi terms, one from each

sample of the noise generator at the four evaluations of

f(e,e).

To rewrite equation (51) in the form of equation (19).

the BDiGDiB~i terms will be manipulated into one equivalent

BDQDBZ term. To do this, first assume that OD is constant

over the update interval, leading to OD1 = QD2 = QD3 = QD4

= OD. Now, using this assumption and the general relation-

ship given by equation (5), define

BDODBZ = BD10DBZ1 + BD2QDBZ2 + BD30DBZ3 + BD40DBZ4

From the BDi definitions given in equation (59),

BD1QDBZ1 = ojh2 [BODBTj + alalc2 h 3 [ABODBT + BODBTAT]

+ auh 4JOEABQDBTAT

+ a 2 alOcIa 3 h 4 (A2 BQDBT + BODBT(AT) 2 ]

+ a 3a 2 allc0 4 h 5 [A 3 BODBT + BODBT(AT) 3 ]

+ aja2 2-2 m3 hS(A2 BQDBTAT + ABODBT(AT) 2 1

+ (a 2 al` 3 ) 2 h 6 (A 2 BODBT(AT) 21
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+ aja2 a 3 ao~ah6[A3 BQDBTAT + ABQDBT(AT) 3 ]

+ ajaia3 a 3 q4h 7 (A3 BQDBT(AT) 2 + A2 BQDBT(AT) 3 1

+ (a 3 a 2 alo4 )2h8[A 3 BQDBT(AT) 3 ]

BD2QDBZ2 - ajh2 tSQDBTI + a 2 a2X3 h 3 CABQDBT + BQDBTATI

+ aj+~ 4CABQD BTATI

+ a 3 a 2 c2a4h 4 [A 2 BQDBT + BQDBT(AT) 2 ]

+ aja3cg3 q4hS(A2 BQDBTAT + ABQDBT(AT) 2J

+ (a 3 a 2 o4 ) 2 h 6 (A2 BQDBT(AT) 2 ]

BD3QDBZ3 = Ih2( BQDBT] + a 3 cc3 u•4h 3 (ABQDBT + BQDBTATJ

+ a~cih4CABQDBTATI

BD4Q)DBZ4 = oih 2 (BQDB T)

and BDODBZ - BD1QDB•l + BD2QDBZ2 + BD3QDBZ3 + BD4QDBZ4 (52)

Notice that BDQDBZ is a function of the system dynamics as

it was with the 2nd order Runge-Kutta algorithm. As with

the 2nd order algorithm, it is desireable to make BDQDB3

independent of the dynamics so the relationship between OD

and 0 will be independent of the dynamics. To accomplish

this, the same assumption that was made in arriving at the

expression on the right side of equation (22) will be made

again to obtain an approximation to equation (52) that is

independent of the dynamics. Specifically, assume that h

is selected reasonably small, such that

BDQDBZ x (af + cg + a3 + ,ah 2 [(BODBT]

For a, a4 - 1/6 and a2 - =3 - 1/3

BDODBZ - h2BQDBTAI•,)2 - h 2 BQDBT/3.6
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With this approximation to BDQDB3 and equation (22), the

relationship between 0 D and Q for this 4th order Runge-

Kutta integrator is

OD = 3.60/h (53)

nth Order Runge-Kutta

The trend established in the above analyses can be

used to extend the results to an nth order Runge-Kutta in-

tegrator. Consider that the coefficients used in an nth

order Runge-Kutta integrator are selected to ensure an

nth order truncation of a Taylor series expansion of the

state transition matrix.(61 Therefore, the integrator will

always provide a ID(hO) that approximates the state tran-

sition matrix, 1(hG), over some interval h. Based on this

fact, the state update equation for the system will be in

the form of

JLi l= -D(h,),Li + '2IBDkIDk (54)k=l

where a 
qnm

I q <m
where _lap a. aq m

P=m ameam+.lesaq q > m

and ID(h,I) is an nth order truncation of equation (12).

The expression in equation (54) for determining BDk was

derived by noticing the sequence of coefficients in the BD

terms in equation (5), equation (38) and equation (38).
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The discrete covariance equation for a system solved

by an nth order Runge-Kutta will be

n
PD(ti+I) = 1D(h,0)PD(ti)1(h,0) + X= BDkQDkBjk (55)

k-i

where QDk = E[IRkMk. Assuming QDk = QD for all k from 1

to n and assuming that h is small, as assumed in equation

(21), then, for an nth order Runge-Kutta integrator

BDQDB3 x h2BQDBT2I (ai) 2 = h 2 BQDBT/F (56)
i-i

n
where r = 1/(z1 of)

From equation (56) and equation (22), the relationship

between 0 D and 0 will be

OD = Fo/h (57)

The correction factor, F, for commonly used Runge-Kutta

methods is given in Table 1.

Table 1.

Runge-Kutta Correction Factors

Order ai coefficients Corr. Factor

2 aI=- .5 , a2 =.5 r = 2

3 a=a = 16, / 2 = 2/3 F = 2

4 al = 1/6 , a(2 = 133
-m3 = 1/3 , 04 = 1/6 r = 3.6

4 (Gil) a1 = 1/6 F I(m = (2 -- ')/ 6
am3 = (2 +;")16 , a4 = 1/6 r = 18/7

= 2.57
(5,6) ,= 7/90 , a2 = 0

m3 = 32/90 , 0a4 = 12/9
=32/96 9 i = 7/90 F = 3.54
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Alternate Analysis Method

The analysis approach taken with Runge-Kutta methods

becomes difficult to manage when applied to other integra-

tion methods. Jury (71 offers an alternative approach that

is based on z-transforms and yields a steady-state value of

the autocorrelation matrix. Although this new approach is

more manageable in some cases, it is practically, though

not mathematically, restricted to scalar equations. To

develop and understand this alternative approach, E[x 21 for

a 2nd order Runge-Kutta integrator will be determined by

the Jury method.

Jury shows that if a discrete scalar system driven by

discrete white noise can be described by

M(z)
X(z) = - VD(z) = G(z)UD(z) (58)

L(z)
where z-1 is the discrete delay operator;

X(z) is the z-transform of the state xi;

WD(Z) is the z-transform of the input random
sequence with variance OD;

and M(z) and L(z) are polynomials in z.

then

E[x 2 1 = -- G(z)G(z-l)z-ldz (59)
29J -I

where J -

In reference (7), Table III of the Appendix, Jury

provides an algorithm for evaluating the contour integral

in equation (59). A summary of the algorithm follows.
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Given equation (58) such that

1(z) M@zn + *1 zn-1 + ... + an
G(z) - - (60)

L(z) 1gzn + l 1 zn-1 + ... + in

then equation (59) can be evaluated to yield the steady-

state value

=tf ( - 11 (61)

lOIJI5
where I1I denotes the matrix determinant operation. The

matrices A and A1 are square, have dimension n+1 (n is the

order of L(z)), and have elements formed from the coeffi-

cients of L(z) and M(z). Specifically,

10 11 12 13 ... in

1 1 10+12 11+13 12+14 ... ln-1

A• A 12 13 10+14 11+15 ... ln-2 (62)

L, n a 0 a ... 19

and Al is formed by replacing the first column of Al with

the vector

n

r S20:•B(mtmi+2)

2mgmn
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To apply Jury's algorithm to analyzing the 2nd order

Runge-Kutta integrator, consider a scalar linear differen-

tial equation of the form

i(t) = Ax(t) + Bv(t) - f(x,t) (63)

Applying equation (63) to the Runge-Kutta routine given by

equations (35) - (37) yields a difference equation in the

form of

xk - Xk-2 + 0.5Yk-1 + g. 5 Yk-2 (64)

where

xk_2 - x(ih);

xk - x((i+l)h);

Yk-2 - h(Ax(ih) + BwD1];

and Yk-1 - h(A(yk- 2 + xk-2) + BwD21

where wDl and wD2 are defined as in equation (35). Note

that k increments two for one increment in ih. This is

done in order to handle the two sequential inputs, wD1 and

wD2. Taking the z-transform of equation (64) yields

(0.5z + 0.5 + 0.5hA)hBV(z)
X(z) - (65)

where ED is defined above equation (38). Note that equa-

tion (65) is in the form of equation (58); hence, the Jury

algorithm can be applied directly. For this case mg = 9;

u1 - 9.5; m2 - 0.5(1 + hA); lg - 1; 11 - 0; and 12 = -ED-

Evaluating the matrices A and Al using these coefficients
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provides

1 0 -1D

J = l -ID 0

-][ D 0 1

and

a (g.5) 2 +(0.5) 2 (1+hA) 2  1 -]D

A = 2(0.5) 2 (lhA) 2  1-31 I
0 0 1

Evaluating the determinates of • and £JQ results in

j - (1 - D)( - )

and m -ll (9.5)2(1 + (1 + hA) 2 ](1 - AD)

Therefore, from equation (61)

(0.5 + 0.5(hA) + (0.5hA) 2 ]h 2 B2 QD (66)
E~x•] = 1661-•

Manipulating equation (66) yields

E(41J - ffSEixjJ + (0.5 + 0.5hA + (0.5hA)2 lh2B2 QD

Comparing this result to the steady-state value of the

scalar form of equation (19) provides

B90D - (0.5 + 0.5hA + (B.5hA) 2 ]h 2 B2 QD

which agrees with the scalar form equation (40) evaluated

with • = al 2 = 0.5 and a1 = 1.

Adams-Bashforth Methods

Adams-Bashforth methods belong to a class of integra-

tion algorithms called multistep methods. Multistep

methods have the form [81
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n-1
Li+1 - &i +÷z Cj+lf(QLi-j'(i-1)h) (67)

where the aj's are coefficients dependent on the particular

algorithm and L(.,.) is given in equation (29) evaluated at

t = (i-J)h. Because of the nature of multistep methods,

the analysis approach proposed by Jury will be used in

determining BQ 0D.

The fourth-order Adams-Bashforth algorithm for the

system given by equation (10) is [6)

Lii÷ = Li + h(0[l(ALi + B•i) + o&2 (A&Lj- 1 + BI-,)

+ a3(i.-_2 + BI.i_2) + a(4(AL-_3 + BEi._3)] (68)

where a,1 55/24 ; a2 - -59/24 ; a3 - 37/24 ; a4 = -9/24 .

Limiting equation (68) to the scalar case, transforming it

to the z-domain and writing it in the form of equation (58)

yields

hB[alz 3 + a2 z 2 + a 3 z + a4V](z)X(z) - (69)

z4 - (1 + 013hA)z3 - a2hAz 2 - =3 hAz - a4hA

where X, V, A, and B are scalars. The application of equa-

tion (69) to the algorithm given by equations (60) - (62)

Is straight forward, but quite tedious, because it requires

solving two polynomial matrices. A procedure was developed

and a computer program was written to help facilitate the

the computations. That procedure and program are provided

in Appendix A. The results of the Jury Analysis for this

problem is
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h 2 B 2 QD[1 - 6.34hA + 18.9(hA) 2 - 60.8(hA) 3 + ... 3

l-I)

leading to

BSQD - h 2 B2 QD[1 - 6.34hA + 18.9(hA) 2 - 60.8(hA) 3 + ... 3

B8QD is actually a polynomial in hA of infinite order.

The first few significant terms are provided above. It

will be assumed that IhAl ( 1, thereby making it possible

to approximate the B8QD by a finite polynomial. For con-

venience, let

BBOD - h 2 B2 QD[1 - 6.34hA + 18.9(hA) 2 - 60.8(hA) 3 ] (70)

Using equation (70) to evaluate the left side of the scalar

form of eqation (22) leads to the relationship

OD - Q/[h(1 - 6.34(hA) + 18.9(hA) 2 - 60.8(hA) 3 )] (71)

Notice that equation (71) has a strong dependence on the

system dynamics. However, equation (71) will reduce to

equation (24) as hA approaches zero.

W,,. .. •,.. .• ,.•.•• • .; , ;
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IV. ERROR ANALYSES

One is always concerned with errors in performing

analyses of continuous systems via simulation. Digital

simulation introduces a number of unique error sources.

The effects of those errors are usually categorized into

two areas; one pertaining to round-off errors (finite word-

length errors) and one pertaining to truncation errors due

to representing the system models by truncated infinite

series. With respect to digital simulations of physical

systems, round-off errors normally begin to influence the

accuracy of the results when the integration step size, h,

is decreased to the point that the changes in the system

dynamics become smaller than the numerical accuracy of the

digital computations. On the other hand, truncation errors

typically increase as the step size becomes larger. Unac-

ceptable truncation errors occur when 1D(hg) no longer

accurately approximates 1(hg). Usually, there is a region

of possible values of h in which neither type error is

significant. For efficiency reasons, the system analyst

will normally select the largest value of h that will not

introduce significant truncation errors and use a machine

that provides adequate numerical accuracy.

47
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In deterministic analyses, the order of the integra-

tion method is usually selected to minimize truncation

errors. The type of nth order integration method is

selected to maximize efficiency of solution. For instance,

it is generally accepted that a 4th order Adams-Bashforth

algorithm is more efficient than a 4th order Runge-Kutta

algorithm.[6] In stochastic analyses, these same problems

exist and hence, the same decisions must be made, but an

additional error source is introduced due to the need to

insure statistical accuracy. In Chapter II, it was shown

that the first-order statistics of the noise corrupted

states will be processed in the same way as deterministic

states but higher order statistics will be processed in a

unique manner. The second-order statistics will be proces-

sed by a solution to equation (14) and higher order statis-

tics will likewise be processed by unique integral equa-

tions. For linear systems forced by Gaussian distributed

noise, the first and second-order statistics fully describe

the statistical behavior of the system.(1) However, if the

noise is non-Gaussian or if the system is nonlinear, higher

order statistics will have to be calculated.

Thus far, all of the analyses presented in this paper

with regards to the processing of the second-order statis-

tics have been based on the assumption that h would be

selected small enough to allow one to approximate the state

transition matrix by the identity matrix. In practical
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terms, this means that the step size required to accurately

compute the second-order statistics must be much smaller

than is required to compute the first-order statistics as

well as the deterministic states. This step size require-

ment will translate into much more costly analyses. Fur-

ther, it could lead to the introduction of round-off er-

rors. Since the step size assumption that allowed the use

of equation (21) was made for convenience, it will be use-

ful to see if the step size requirement imposed by that

assumption can be relaxed. To perform this investigation,

a more useful form of equation (20) will be needed.

Analysis Aooroach

If one restricts the problem to linear systems or to

well behaved (analytic) nonlinear systems that can be ac-

curately modeled through some linearization process, then

N(O,-) can be represented by the infinite series given in

equation (12). Likewise, the integral expression in equa-

tion (20) can be represented by an infinite series. To

develop the series representation of equation (20), let

BQBT = A (73)

The series form of equation (12) is
SAi(h-T)i

JIM(h,) = M: (74)
i=0 it

Using equations (73) and (74) yields

go Go AiA(AT)i(h-T)i+J
=Rhj)BQBTIT(hA) X (75)

Equation (75) is a polynomial of infinite order with the

independent variable T. Since A and A are independent of
I

I, . -. • •-.- , ,• •• •,• • Z, • • . . , _, .••• . . '- •,- .•. .• • .- ••',, ,.•.• ,
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1, Equation (75) can easily be integrated with respect to T

and evaluated over the limits 0 to h as in equation (20) to

yield

jhb- AiA(AT)j rh
]U(h,')AEjT(h,T)dT - X: X ii _(h-T)idl

M :0 AiA(AT)J(h)i+J
- h(76)

i-I J=O (i+J+l)iltj

Equation (76) is a quadratic polynomial in hA of in-

finite order. If h is selected reasonably small such that

h*lI)maxI < 1, where IPmazt is the magnitude of the largest

eigenvalue of A, then equation (76) can be reasonably ap-

proximated by a finite series of order n. A truncated

expression of equation (76) can be used to determine the

order of magnitude of the local error in the discrete co-

variance computations. The appropriate order of truncation

will be a function of the integration method and its selec-

tion will be based on the order of the BDQDB3 expression

determined for the integration method. Thus, at this

point, the analysis becomes integration method dependent.

Integrator Analyses

In the analyses to follow, equation (76) will be

truncated at various orders in h. For notational

brevity, an nth order truncation of equation (76)

means that i will step from 0 to n and J will step

from 0 to n, however all terms resulting from the

condition ((i+l) ) n) will be neglected.
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Ruler Intearator

For the Euler integrator, from equation (32),

BDQDBS = h 2 BQDBT (77)

Equating the right side of equation (77) to a first-order

truncation of equation (76), yields

h 2 BQDBT - h(BQBT + 0.513(ABQBT + BOBTAT)) (78)

If OD = Q/h, as proposed by Griffith(4J. then equation

(78) will be valid if the first-order terms in h on the

right side of equation (78) are much smaller than the

zeroth-order term. However, if it is assumed (as Griffith

did) that the state transition matrix can be approximated

by the identity matrix (a zeroth-order truncation of equa-

tion (12)) then equation (24) will be a valid relationship

that can be used to satisfy equation (78). Making that

assumption translates into a smaller step size requirement.

Therefore, it is concluded that the local error that

results in using equation (24) to relate OD to Q for the

Euler integrator is of order h as compared to a local

integration error of order h 2 .[61

2nd Order Runae-Kutta

Uith a1 = =2 = 0.5, equation (40) evaluates to

BDQDBS - 9.5h2 (BODBT + 0.5h(ABQDBT + BQDBTAT)

+ h 2 (ABQDBTAT/2)) (79)

The right side of equation (76) truncated at 2nd order is

h(BQBT + 0.Sh(ABQBT + BQBTAT) + h 2 (ABOBTAT/3

+ (A 2 BQBT + BQBT(AT) 2 )/6)) (89)
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By direct inspection, it is seen that the right side of

equation (79) will approximate expression (80) with local

error on the order of h 2 , if QD = 20/h. This compares to a

local integration error on the order of h 3 .[6]

4th Order Runae-Kutta

For notational convenience let

A = BOBT

and AD = BQDBT

For the most commonly used 4th order Runge-Kutta integrator

with a1 = a4 = 1/6; a2 = at3 - 1/3; a 1 = a 2 = 0.5; and a 3 =

1, equation (52) yields

BDQDB3 = -rA[ + .5[AtD + ADAT]h + o + (T)2]h2
3.6L 6.667

S+ [A/ AT]h 2  + [(A3i% + Ao(AT)3]h3
3. 33340

+ -L-A2kr& AT + Akrj(AT) 2 ]h 3 + ..-. i A2ft(AT)2]h4
19. 29.

+ 4-•(A3 ,kAT + AtI(AT)3 3h4

40.

1+. 1(A3N)(AT)2 + A2No(AT) 3 ]h5

89.

.+1 A t(A3 (81)
169

The right side of equation (76) truncated at sixth-order is

hi A + .5[AA + MT]h + -- A2 A + A(AT) 2 ]h 2

L 6

+ 1(AAAT]h 2  + -- A3A + A(AT) 3 ]h 3

3 24.

a -S. ... ..-. ,-o.. ....... ',....V..,:.. ,.-............. , ,, .- ,.-,...:••" ........ . .W.,.:-;...-. .....-.-..,..-;...-.....--.,;.......-...:•:•
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+ 1 EA2A.T + AA(AT) 2 ]h 3 + ---. [A 2 A(AT) 2]h 4

8 20.

+ I EA3AAT 4+ AA(AT) 3Th 4 + rA4A + A(AT) 4 "h 4

31. 120
+1 1AA+A(T5h
47 •IASA 20 A(AT)72h. . 2 I•A3A(AT)2 + A2A(AT) 3 ]h5

720 72.
I1+ [A4MAT + AA(AT) 4 h51 + 44-I--A 3 AD(AT) 3 ]h6

144 252
4- . A(AT) 6 36 +-A4A(AT)2 + A2A(AT) 4 ]h 6

+ 1-[A5AT + AA(AT)5Jh6] (82)
841 

(2

A comparison of the right side of equation (81) to expres-

sion (82) reveals that equation (81) will approximate ex-

pression (82). vith local error on the order of h 2 , if

3.60
ODin h

Note that a 4th order Runge-Kutta has an error of the

same order in h as a 2nd order Runge-Kutta. Based on this

observation, one may ask if this means that a 2nd order

Runge-Kutta should be preferred over a 4th order Runge-

Kutta for efficiency versus accuracy reasons. Certainly

not, for two reasons. First, the 4th order Runge-Kutta is

still preferred for the deterministic state equations and

for the first-order statistics of the non-deterministic

states. Second, although the two integrators have covari-

ance errors on the same order in h, the absolute error of

the 4th order Runge-Kutta will be smaller than that of the

2nd order Runge-Kutta. To see this, consider that the abso-

lute error in the 4th order integrator is a term by term
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difference between equation (81) and equation (76). Like-

wise, the absolute error in the 2nd order integrator is a

term by term difference between equation (79) and equation

(76). For comparison purposes, expression (81) contains

all the useful information of equation (76) because both

methods are equally in error above order six. Since the

second-order integrator contains no information above order

two and the 4th order integrator only deviates by a frac-

tional amount in each common term through order six, it is

concluded that the 4th order method has a smaller absolute

error.

4th Order Adams-Bashforth Intearator

From equation (79), the scalar case of the 4th order

Adams-Bashforth integrator provides

B&QD - h 2 B2 QD[l - 6.34hA + 18.9(hA) 2 - 60.9(hA) 3] (83)

A third-order truncation of the right side of equation (76)

for the scalar case yields

hB2Q[1 + hA + 2(hA) 2 /3 + (hA) 3 /3J (84)

Since equation (83) and expression (84) are scalar func-

tions, the relationship between OD and Q can be determined

directly. Doing so, yields

Q(1 + hA + 2(hA) 2 /3 + (hA) 3 /33 (85)
h(l - 6.34hA + 18.9(hA) 2 - 60.9(hA) 3J

Casual inspection of equation (85) shows that equation (24)

is only valid for hA 9 1 when applied to the Adams-

Bashforth integrator.

S. ****~ - . *...* .**~A
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Scalar Analyses

It will be beneficial to examine the above results for

the scalar case. Restricting the equations to scalar sys-

tems will allow the results to be demonstrated graphically

by defining an error equation and plotting it as a function

of the parameter, hA. The parameter, hA, is the product of

the step size, h, with the dynamic coefficient, A. For the

scalar case, A is the reciprocal of the system time-con-

stant. The step size is selected such that the ratio of h

to the system time-constant is less than one, typically

one-tenth. Therefore, hA is typically 0.1 or less.

A scalar case of equation (20) shows that, ideally,

for each integrator considered, the normalization function

should result in the equality

B&0D J10 2h)B2QdT

= B20 E2A(h-T)dl
Jq

- B2 Q(( 2 hA - 1)/2A (86)

In each of the cases presented in this chapter,

BS = h 2 B2 f(hA)/r

where f(hA) was a polynomial in hA, and r was a constant

used to make the zeroth coefficient of f(hA) equal to 1.

Further, in order to make the relationship between OD and Q

independent of the system dynamics, it was proposed that

for each of the cases, with the possible exception of the
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Adams-Bashforth integrator,

OD - FQ/h

Therefore,

B -OD = B2 Qhf(hA) (87)

Substituting equation (87) into equation (86), provides the

ideal relationship

2hAf(hA) = E2hA - 1

In reality, this relationship will not be exact because

f(hA) x (E2hA - 1)/2hA

Based on this realization, an error function can be

defined and evaluated for each integrator. Let

M(hA) = 2hAf(hA) - E2hA + 1 (88)

where M(hA) is the error function. Note that M(hA) - 0 for

hA - 0. This function can be plotted versus hA for each of

the f(hA) functions derived in these analyses. A number of

practical assumptions will be made in plotting MAhA) for

each of the integrators. First, it will be assumed that

the dynamic system being simulated is stable; thus, A ( 0.

Next, the range of hA will be restricted to values that

would likely be considered for use in a simulation; specif-

ically, 9 1 IhAl s; 0.2.

Ruler Intearator

From equation (77), for the Euler integrator, it is seen

that f(hA) - 1. Figure 2 provides a plot of equation (88)

evaluated with f(hA) = 1. Note, that using equation (24)

to set the random number generator's covariance would
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result in less than a 1% error in the computed discrete

covariance.

0
R

-. ............................................................... ..........

1.154 6. 1696 6.1 sit 8.280#
-hR

Figure 2. Error Function For Eyler Integrator using OD 0 /h

2nd and 4th Order Runae-Kutta Integrators

For the 2nd order Runge-Kutta integrator, equation

(79) provides

hA) - 1.0 + hA + 9.5(hA)2

Likewise, for the 4th order Runge-Kutta integrator, equa-

tion (81) provides

M(hA) - 1.5 + hA + (3/5)(hA) 2 + (1/4)(hA) 3

+ (1/lI)(hA) 4 + (1/40)(hA) 5 + (1/169)(hA) 6

Figure 3 provides a comparison plot of V(hA) evaluated with

these two M(hA) functions. Note that, as predicted in the

error analyses, the order of magnitude of the error is the

~ ~ --'
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same for the two methods and the absolute error of the 4th

order Runge-Kutta integrator is smaller than that of the

2nd order Runge-Kutta integrator. However, both integra-

tors provide accurate results for the second-order statis-

tics when the proper statistical relationship is used.

Adams-Bashforth Intearator

There are several choices for the 0 D to 0 normalizing

function. Consider two choices. First, consider the one

proposed by Griffith where QD - Q/h. The advantage of this

choice is that the normalizing function is independent of

the system dynamics. With this normalizing function,

f(hA) - 1.0 - 6.34hA + 18.9(hA) 2 - 69.9(hA) 3

The second choice would be to use

OD = Q/(h(l.9 - 6.34hA + 18.9(hA) 2 - 60.9(hA) 3 ))

and

M(hA) = 1.0

The obvious disadvantage of this choice is that the OD to 0

normalizing function is dependent on the system dynamics.

However, for analysis purposes, this choice must be consi-

dered. A comparison plot for these two f(hA) functions is

given in Figure 4. Note from Figure 4, that the use of

QD = 0/h for the Adams-Bashforth integrator could result in

errors on the order of 100 percent. Further, note that

even when using the complex normalizing function, the er-

rors are the same as would be obtained from using an Euler

integrator. Besides this sensitivity to step size, there
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are other problems with the use of the Adams-Bashforth

integrator for stochastic analyses. These other problems

will be demonstrated in Chapter V.

0.6626 0 =2nd OriderI A= 4t~h Order

8.96296....... . .......................................................

U .6 6 ... ..... ............... ................r................

R
g.89108 ................. ... ...........

T0.........6........................

-hA

Figure 3. Error Functions forg 2nd I 4th Order Rung#-Kutta Int.

0

..................6.................. .................................. ...- ..........

-hA

Figure 4. Error Function For Rdass-Bashforth Integrator



V. NUMERICAL AND FURTHER ANALYSES

To demonstrate the significance of the findings in

Chapters III and IV, a first-order linear differential sto-

chastic equation will be analyzed numerically. Limiting

the example to a linear scalar system will allow the covar-

Lance to be conveniently expressed analytically and the

numerical results compared directly. For the example, the

continuous system is described by

A(t) = -2x(t) + w(t) (89)

where w(t) is a normally distributed white random process

with a spectral density equal to w2. For the example let

2 - .gl .

Equation (14) will be used to analytically determine

P(t). At the outset, assume that t9 = 0 and P(tg) = 0.

Vith these assumptions, the scalar form of equation (14)

applied to this system is

P(t) =Jn2(t,B2QlTldT

where 1(t,T) = E- 2 (t-T) ; B = 1; and Q(T) = w2. Evaluating

the right side of the covariance equation provides

P(t) a .2(1 - C-4t)/ 4  (99)

To numerically analyze this system, a Monte Carlo

simulation was written in FORTRAN 77 and executed using

66
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single precision arithmetic on a VAX 786 computer. One

thousand executions were made per Monte Carlo simulation.

The simulation was written so the integrator would be a

module interfaced with the rest of the simulation through

parameter I/0. Each integrator of interest was then coded

as a module and incorporated in the simulation as needed.

Thus, the only variable from one simulation program to

another was the explicit integrator under investigation.

A random number generator proposed by Harse and Roberts (91

was used to generate a uniform distributed random sequence.

The uniformly distributed sequence was then shaped into an

approximate Gaussian distributed sequence by direct appli-

cation of the Central Limit Theorem involving the summation

of twelve samples from the random number generator.[l.21

The random number generator routine is given in Appendix B.

Fixed-Step Method Results

Figures 5 through 10 show the results from the Honte

Carlo analyses for various fixed-step integrators. The

integrators were selected to exercise and test the analyti-

cal result given by equation (57) for a number of frequent-

ly used Runge-Kutta algorithms. Table 2 provides a summary

of the methods tested as well as the step size and normali-

zation function used in each test.
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Table 2

Summary of Figures Providing Fixed-Step Results

FIGURE INTEGRATOR STEP SIZE NORMALIZING
NUMBER METHOD (seconds) FUNCTION

5 EULER 0.005 OD = 0/h
6 2nd Ord R-K 6.065 OD - 2Q/h
7 4th Ord R-K 6.005 OD = 3.60/h
8 4th Ord R-K 0.100 OD = 3.6Q0h
9 4th Order

R-K-Gil 0.050 OD = 18Q/7h
10 R-K (5,6) 0.650 QD = 3.54Q/h

The step size used to generate the data in Figures 5,

6, and 7 was selected to enforce the original assumption

that the state transition matrix would approximate the

identity matrix. At a step size of 0.005 seconds, the

state transition matrix for the system described by equa-

tion (89) is approximately equal to 0.99 over one step. The

plots clearly demonstrate the validity of equation (57).

The results also show that the use of OD = Q/h for any

Runge-Kutta method higher than first-order will introduce

significant, and unnecessary errors into the simulation.

The error analyses in Chapter IV predicted that the

normalization function for the Runge-Kutta methods would be

fairly insensitive to a relaxation of the step size re-

strictions imposed by the assumption that the state trans-

ition matrix approximate the identity matrix. To test that

prediction, the 4th order Runge-Kutta integrator-based

simulation was re-run at a large step size of 0.1 seconds.

Figure 8 shows the results from this test. It should be
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Figure 5. Euler Integrator Analysis
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Figure 6. 2nd Order Runse-Kutta Analysis
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Figure 7. 4th Order Runge-Kutta Analysis
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Figure 8. 4th Order Runge-Kutta Analysis (h z 6.1 seconds)
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noted, that although this seems to be a large step size,

for this example,

i109-1,N) - 1(5.1,1)1 < 3*15-6

where I.,.) is given by equation (12) and ID(.,') is given

by equation (49). As seen by the plot, the normalization

function still provides accurate numerical results.

Figure 9 shows the results for a Runge-Kutta-Gil meth-

od.[51 The Runge-Kutta-Gil method is a 4th order method

that uses a non-conventional algorithm for calculating the

intermediate update vectors. Gil derived his procedure to

minimize finite word-length errors. The algorithm was

tested to insure that equation (57) would hold for this

nonconventional method. Clearly It does.

Figure 10 shows the results for another non-conven-

tional method. This method is called a Runge-Kutta (5,6).

15J It is a sixth-order method and thus makes six evalua-

tions of the derivative functions during each update. How-

ever, it only explicitly uses five of the intermediate up-

date vectors to propagate the states over the interval.

This algorithm, as well as the Runge-Kutta (7,8) method, is

often used in situations needing high accuracy, such as the

solution to orbital equations of motion. The correction

factor, r, for the Runge-Kutta (5,6) integrator is given in

Chapter III, Table 1. Figure 16 shows, once again, that

equation (57) is a valid general solution to the problem.
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Figure 9. 4th Order Runge-Kutta--Gul Analysis
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Figure 16. Runge-Kutta (5j6) Analysis
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Adams-Bashforth Method

The Adams-Bashforth integrator selected for evaluation

is a fourth-order method and is given by equation (68).

The integrator was first tested at an integration step of

6.115 seconds. Equation (71) was used to determine the

correct value of the discrete covariance. The results of

this numerical analysis are provided in Figure 11. Figure

11 shows a comparison between the calculated state covari-

ance when equation (71) was used, the calculated state co-

variance when equation (24) was used, as suggested by

Griffith, and the analytical solution to the state covari-

ance given by equation (90). Figure 11 demonstrates that

equation (71) provides greater accuracy over equation (24).

Examination of equation (71) shows that as the step size

approaches zero, equation (71) will approach equation (24).

Figure 12 demonstrates this relationship and provides val-

idity to Griffith's numerical findings. For the case pre-

sented in Figure 11, the step size was selected to be 0.001

seconds.

An interesting problem occurred with the Adams-Bash-

forth integrator. This problem occurs only in stochastic

analyses. Recall that the Adams-Bashforth method, as well

as all multistep methods, are not self-starting. To get an

nth order multistep integrator started, computation of the 'I

derivative function over the first (n-i) steps must be

accomplished independent of the multistep integrator.



68

0Qa ANALYT ICAL A = GD by (7 1) *: GD bi(2-4)]C .0 5 .................... . ." ' ... .....lliiiill
A 0. 8 0 ....................... . .... ........ ....................................................................................
R
A3 9 .68 159 ............... ..................... ........................................... ............................................

C

.. ................. ...... .............................. .....................................I.....

0.01.698 1. 586
TIME (seconds)

Figure 11. 4th Order Adams-Bashforth Rnalysis (h = 0.605 seconds)

lo : ARNALYTI CAL I4 A D =~ OD 1 ~ GD by (24)8 .0.e 3ee ............... ........ .... .. ..................... ...........................................

C 6.66256 ......................................................... . . -. .. .. .. .. ....... '--

* 0

*A 0.00280 ........................................... .....................
R

C
E 8.68186 ...................... -..........................................................

..8................................5............8..........................................

TIME (seconds)

Figure 12. 4th Order Adams-Bashforth Analysis (h 0 6.661 seconds)



69

Often a 4th order Runge-Kutta method is used to start a 4th

order Adams-Bashforth integrator. The order of the two

methods is chosen to be the same so that the numerical ac-

curacy is of the same order of magnitude. The problem that

occurs in stochastic analyses using the Adams-Bashforth

method is due to the starting procedure.

In order for the starting integrator to provide accu-

rate statistics over the starting interval, the covariance

of the random number generator must be set with respect to

the starting integrator. For instance, if a 4th order

Runge-Kutta algorithm is used to start the multistep inte-

grator, OD must be related to 0 by O0 = 3.60/h over the

starting interval. Once the four evaluations have occur-

red, control is turned over the Adams-Bashforth integrator

and QD is then set in accordance with equation (71). The

problem occurs during the first four updates made by the

Adams-Bashforth integrator. The noise terms used in the

evaluation of the derivative functions during the starting

interval are mismatched to the noise terms needed by the

Adams-Bashforth for accurate propagation of the states.

This mismatch causes a large transient spike and introduces

an error in the state calculation that propagates in time.

Figure 13 illustrates this phenomenon. This problem

appears only in the calculation of the stochastic states.

* ~ ~~~~~~~~ .** ** * .-. . .. . * .- ' -.--. *.'....
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To remedy the problem, a number of potential solutions

was tried resulting in varying degrees of success. The

necessary requirements for an adequate solution were found

to be that the starting procedure must provide accurate

updates at the selected step size and the noise normaliza-

tion function used by the starting integrator must be ap-

proximately the same as the one used by the Adams-Bashforth.

The method that finally provided good results was a method

involving the use of a number of different integration

methods. At the first update an Euler method was used,

followed by a 2nd order Adams-Bashforth integrator at the

second update, followed by a 3rd order Adams-Bashforth

integrator at the third update and finally the 4th order

Adams-Bashforth integrator at the 4th and subsequent up-

dates. The data used to construct Figures 11 and 12 were

determined with the 4th order Adams-Bashforth integrator

started by this method.

The error analyses in Chapter IV predicted that the

Adams-Bashforth integrator would be sensitive to a viola-

tion of the assumption that the state transition matrix

would approximate the identity matrix over the integration

interval. To test this prediction, the Adams-Bashforth

simulation was run at a step size of 0.025 seconds. At

this step size V(h,O) 0 0.95 . This step size was chosen

because the total execution time realized for the simula-

tion was 138 seconds which is slightly longer than that
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realized running the 4th order Runge-Iutta simulation (126

seconds) with a step size of 0.1 seconds. Figure 14 shows

the results from this test and verifies the prediction. A

Comparison of Figure 14 to Figure 8 and considering equiva-

lent execution times, indicates that there is no benefit in

using an Adams-Bashforth integrator for stochastic

simulations.

[07 ANALYTICAL I&= OD byj (71)0.e9380 .......................................... ........................................... i...........................................

C I. 926 ................................ ...........

....................
R
I

N
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E .99895 ................................................ .....................

0.5066 1.66i 1.546
TIME (seconds)

Ficure 13. 4th Order Adais-Bashforth vith Runge-Kutta Starter
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Fitu,'e 14. Rdans-Bashfovrth Analysis (h = 9.825 seconds)

Other, Integrators of Interetj

Thus far, all of the analyses have dealt with conven-

tional integrat-ors. A number of more complex integration

methods are frequently used in special situations. These

more complex methods are usually selected in order to

obtain highly accurate solutions at moderate computational

costs. Two types of "advanced" algorithms that are of in-

terest to this study are variable-step-size methods and

predictor-corrector methods.

Variable-step-size Methods

Variable-step-size methods are useful for simulating

systems that contain time-varying dynamics. In any
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simulation, the step size should be selected to handle the

fastest dynamics in the system. However, if the dynamics

are fast over one interval and then slow over another

interval, a step size selected for the fast interval will

cause wasted computations during the slow interval. Varia-

ble-step-size methods address this problem by computing

some function that senses the accuracy of solution and

adaptively adjusts the step size so the errors remain

bounded below some defined tolerance level. Application of

variable-step-size methods to stochastic systems presents

some unique problems not encountered with deterministic

systems.

As established in this dissertation, the magnitude of

the noise added to the system states is a function of the

step size. This fact translates into effectively discount-

ing all variable-step-size methods based on multistep in-

tegration methods because a step size adjustment would

require a total restart of the integrator using new noise

terms. Therefore, at the outset, the search for candidate

variable-step-size methods for this analysis will be re-

stricted to Runge-Kutta methods. As seen in the analyses

presented in Chapter III, each fixed-step integrator has a

unique normalizing function for setting the random number

generator's covariance. This fact makes the application of

methods similar to the Runge-Kutta-Fehlburg integrator dif-

ficult to manage.
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The Runge-Kutta-Fehlburg integrator is an efficient

algorithm that calculates the state update by solving a

fourth-order Runge-Kutta integrator and a fifth-order

Runge-Kutta integrator in parallel. The fourth-order solu-

tion is used to propagate the states and the fifth-order

solution is used to predict the error of the fourth-order

solution. The efficiency of the Fehlburg method is found

in the intermediate derivative evaluations. A fourth-order

Runge-Kutta method requires four function evaluations and a

fifth-order Runge-Kutta method requires six function evalu-

ations. Therefore, a brute force implementation o2 a

fourth and a fifth-order method would require ten function

evaluations. Fehlburg derived a set of coefficients that

would allow the fourth-order update formula to use the same

derivative function evaluations as the fifth-order update;

thus the entire process only requires six function evalua-

tions as compared to ten by the brute force method.(61

The difficulty with applying Fehlburg's algorithm to

stochastic systems is due to the need to use one noise

covariance for the fourth-order update and another for the

fifth-order update. This means that the two update formu-

las can no longer share the derivative function evalua-

tions. The requirement of ten function evaluations per

step makes the computational costs prohibitively large.

Any variable-step-size method that uses two update methods
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of different order to calculate the error function would

introduce this same problem.

A variable-step-size method that does not have any of

the above problems is one presented in reference 5. This

method was developed by Colatz and is based entirely on a

4th order Runge-Kutta integrator. The error formula that

Colatz derived is a function of the intermediate function

evaluations. Specifically, the error function, C, is

.= I 2 - (91)

wb•re the Xi's are given in equation (43). Colatz showed

that the error function given by equation (91) should be

less than a few hundredths in order to insure an accurate

solution. The only difficulty in applying Colatz's formula

was the situation where all the Ki's are nearly zero. This

situation occurs in steady-state. Explicit implementation

of equation (91) in computer code will cause numerical er-

rors in this situation due to a division by small numbers.

To circumvent that problem, equation (91) was implemented

in the following form.

S- K31- fXl - 121 1 0 (92)

where E was set to 0.01 . When equation (92) was used to

predict the maximum step size for a deterministic system

with the same dynamics as in equation (92), it predicted

that h < 6.1 seconds. This is certainly a reasonable fin-

ding. However, when equation (92) was applied to the sto-

.......... ,..~-
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chastic system given by equation (89), the results were

clearly erroneous. Figure 15 is a plot of the left side of

equation (92) versus time for the stochastic system solved

at a step size of 0.995 seconds. As seen from equation

(92). the evaluated expression must be less than or equal

to zero in order to meet the accuracy condition. Figure 15

shows that this condition is never met indicating a need to

reduce the step size. Although other analyses have shown

that this step size is well within acceptable limits, the

step size was reduced an order of magnitude to an

h - 0.9065 seconds. Figure 16 shows the computed error

function at this step size. Clearly, from Figures 15 and

16, the addition of noise to the system makes Colatz's

algorithm useless. This is really not surprising when one

considers that equation (91) Is a function of stochastic

state information, therefore equation (91) is stochastic.

To gain useful information from this stochastic equation, a

stochastic analysis would have to be performed. However,

note that equation (91) is nonlinear making its statistics

non-Gaussian and its analysis difficult. An alternative is

to use deterministic state information in equation (91) or

to use another approach to estimating the required step

size. Regardless, this study strongly suggests that any

error function used to make decisions with regards to step

size adjustment must only be based on deterministic infor-

mation.

-!~-- -~ .~-.Ž .~
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Adams-Moulton Method [6,81

The Adams-Moulton method is a corrector formula for

use in a predictor-corrector integration algorithm. It is

probably the most widely used corrector method. Predictor-

corrector formulas are iterative methods used to increase

the accuracy of solution at relatively low computational

costs. The Adams-Moulton formula requires derivative in-

formation at the next update increment in order to compute

the state at that same increment. The predictor formula is

used to provide that derivative information. The predic-

tor-corrector pair can iterate on the solution for as many

times as necessary. The iteration process can be termina-

ted abruptly after some predetermined number of iterations

or it can be terminated intelligently after reaching some

defined convergence criterion. The equation that describes

the Adams-Moulton corrector formula belongs to the class of

multistep integration methods. Thus, it only requires one

additional function evaluation per iteration. The specific

equation is

zIkj -=Li + h[4lL(.Likll),(i+l)h) + a2l(xi,ih)

+ m3 LCxi.(_l,(i-l)h) + a41..i_2,(i-2)h)] (93)

where al = 9/24; a2 = 19/24; a3 = -5/24 ; a4 = 1/24 ; and

k is the number of predictor-corrector iterations. Note

that equation (93) is independent of the method used to ob-

tain the prediction term, x1ý11). Therefore, to analyze

equation (93) on a per iteration basis, k can be set to 1.

"*1

N2
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Next, note that the noise properties of the corrector for-

mula will only be an explicit function of four independent

noise terms derived at the evaluation of L(.).

To analyze this system, the Jury method presented in

Chapter III will be used. For this analysis, a difference

equation will be required. A change of variable will be

used to account for the iterations In equation (93).

Let j = I + k = i + 1. Using a scalar form of equa-

tion (10) to evaluate f(-,.) in equation (90), then

equation (93) will become

zj+1= -xj_ + h([al(Axj + Bwj) + a2 (AxjI + Bwj_1)

+ a3 (Axj_ 2 + Bwj_ 2 ) + 094(Axj_ 3 + Bwj_ 3 )] (94)

Taking the z-transform of equation (94), assuming x0 = 0,

yields

zX(z) = z-lX(z) + h~al(AX(z) + B(z))

+ a2 (AX(z) + BV(z))z- 1 + a 3 (AX(z) + BV(z))z-2

+ a4(AX(z) + BV(z))z- 3 ] (95)

Multiplying through by z 3 , collecting terms, and rearrang-

ing equation (95), results in

(aUz 3 + a 2 z 2 + a3z + ag4)hBV(z)Xlz) , (96)

z z 4 - alhAz 3 - (1 + a2 hA)z 2 - a 3 hAz - a4 hA

Applying equation (96) to the Jury analysis procedure given

in Chapter III, in the same manner as equation (65). yields

the steady-state expression

EZI2 1 = 0.5556(1 - .I67hA + .012(hA) 2 )h 2 B2 QD 97)
VV(hA)

where
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V(hA) - -1.333hA - 0.6111(hA) 2 + 0.B370(hA) 3 + 0.0069(hA) 4

Unresolved Inconsistency

V(hA) in equation (97) should equal (1 - 18). It does

not. When equation (97) was first developed, the numerator

function was used to determine the OD to 0 normalizing func-

tion without considering the inconsistency in the denomina-

tor function. To compound matters, the normalizing func-

tion worked well in the simulations. However, there is

clearly an analytical error in this derivation. Oblivious

to this error, the numerical analysis will be presented In

order to show a number of important points regarding the

application of the Adams-Moulton formula to stochastic

analyses.

Numerical Findings

The numerator of equation (97) should equal BEQD.

Assuming It does, equating it to the scalar form of equa-

tion (26), and evaluating for small hA, leads to the rela-

tionship

=D - 1.80/h (98)

Figure 17 shows the results of applying equation (98) ,.

to a Adams-Moulton based simulation that uses a 4th order

Adams-Bashforth pred)ctor. To demonstrate that equation

(98) is valid, independent of the predictor, Figure 18

shows the results of the Adams-Moulton simulation that uses

a 4th order Runge-Kutta predictor. For the cases shown in

a' -. *. -1e..k
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Figures 17 and 18. the algorithm was corrected once per up-

date. Figure 19 shows the results of the simulation using

the Adams-Bashforth predictor with 4 predictor-corrector

iterations per update.
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Figure 17. Rdams-Moulton Corrector v/ Adams-Bashforth Predictor
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VI. SUMNARY AND CONCLUSIONS

This dissertation addresses the problem of determining

the correct relationship between the statistics of a con-

tinuous random process and the statistics of a discrete

random process used to simulate the continuous random pro-

cess. The findings of this research are directly applica-

ble to the general field of digital simulation of physical

systems described by ordinary differential equations.

It is shown that to ensure a faithful digital simula-

tion of a continuous random process, the noise statistics

of the random number generator must be set to values dras-

tically different from the noise statistics of the contin-

uous random process. Further, it is established that the

relationship between the continuous and discrete statistics

will be a function of the integration method used in the

digital simulation.

The proper functional relationship between the dis-

crete and continuous noise statistics was derived for

1. the class of Runge-Kutta integrators,

2. the 4th order Adams-Bashforth integrator, and

3. the Adams-Moulton corrector formula.

Additionally, the requirement for proper operation of a

variable-step-size algorithm was developed.
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The derived functional relationship between the dis-

crete and continuous noise statistics for the class of

Runge-Kutta integrators results in a unique normalizing

factor for each Runge-Kutta method. The derivation pro-

vides a useful formula for calculating that factor. The

use of the factor in the statistical relationship function

will provide the proper setting of the random number gener-

ator's statistical parameters. The function is demonstrated

to be accurate for five specific Runge-Xutta integrators.

It is shown, in the error analyses chapter, that all

the integration methods considered yield normalization

functions that, without simplifying assumptions, are

dependent on the system dynamics. This dependency does,

however, decrease with the integration step size. The rate

of decrease varies for each integration method. It Is

shown that the derived normalization functions for the

Runge-Kutta integrators are less sensitive to the system

dynamics than the other examined methods.

In contrast to the Runge-Kutta methods, the derived

function for the Adams-Bashforth integrator is the most

sensitive to the system dynamics. The influence of the

dynamics can be minimized by reducing the integration step

size to a value much smaller than that required for deter-

ministic analyses. However, the required step size for

realizing an effective independence of the system dynamics

is on the order of step size requirements for Euler inte-

AO:.A',&........f.....................
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grators applied to deterministic systems. This extremely

small step size requirement makes the Adams-Bashforth

integrator impractical for stochastic simulations.

The Adams-Moulton formula's normalization function is

derived independent of the predictor algorithm. It is

shown that the derived function is valid when the Adams-

Moulton corrector formula is used with a Runge-Kutta pre-

dictor as well as an Adams-Bashforth predictor. There is

an analytical inconsistency in the Adams-Mouton derivation

that has not been resolved. However, the numerical results

show a number of useful findings for stochastic applica-

tions of this often used corrector formula.

Error functions needed to implement variable step size

integration methods are discussed in detail. It is shown

that when applied to a stochastic system, the error func-

tion for the method considered will be a stochastic func-

tion making its usefulness extremely limited. Numerical

examples are presented to substantiate this finding.

Though this research investigated integration methods

most commonly used in practice, it is certainly not exhaus-

tive. However, the analysis procedures used in this dis-

sertation are applicable to other integration methods that

may be of interest. Without a doubt, the findings of this

research establish the fact that the proper relationship

between the statistics of the continuous random process and

the statistics needed in the simulation for accurate
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modeling is explicitly dependent on the integration method

used in the simulation. To ensure a faithful simulation,

it is mandatory that the proper function be derived and

validated for the specific integration method used in the

simulation. Failure to do so will likely invalidate the

simulation results.
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Application of the Jury method for analyzing discrete

integration algorithms of order three and higher is diffi-

cult without the aid of computational tools. The difficul-

ty is due to the fact that the coefficients of the transfer

functions that describe the integration processes are in

variable form. For instance, consider the transfer func-

tion for the Adams-Bashforth integrator given by equation

(69). The coefficients for the numerator polynomial, M(z),

and the denominator polynomial, L(z), are

me -M a I -l

ml - a 1 hB 11 - -(l + oIhA)

m2 - a 2 hB 12 = -a 2 hA

m3 - a 3 hB 13 = -*3hA

04 - a 4 hB 14 - -a4hA

In the Jury algorithm given by equations (60) - (62), these

coefficients will be used to form the matrices A and sAl as

in equation (62).

Recall from equation (61) that the steady-state value

of the autocorrelation function will be determined by

I lIEx]= 0 D

Thus, to solve the problem for the 4th order Adams-

Bashforth integrator, the determinant operation must be

accomplished for two fifth order square matrices. From

equation (62), it is seen that the elements of A will be a

linear combination of the coefficients 1g through 14.
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Since the coefficients ig through 14 are first-order poly-

nomials in hA, the elements of A will also be first-order

polynomials in hA. The determinant of A will, therefore,

be a polynomial in hA of order five or less.

The matrix A, will be the same as A except for the

first column. The elements In the first column of A1 will

be a combination of the square of the coefficients m0 - m4.

Since all the coefficients of K(z) contain the common term

hB, hB can be conveniently factored out. Therfore, A1 will

be a fifth-order square matrix with constants in the first

column and first-order polynomials in hA in columns 2 - 5.

Hence, the determinant of •1 will be a polynomial in hA of

order four or less.

Based on the above observations, it is expected that

the steady-state covarLance for the Adams-Bashforth inte-

grator will have the following form

E(4xj - h2 B2 QD I11, h2B2 QD(hA) (99)

Slell V(hA)

where U(hA) is a polynomial In hA of order four or less and

V(hA) is a polynomial In hA of order five or less.

The calculation of a determinant for a fifth order

matrix of constants is tedious, but for a matrix of polyno-

mials it Is grueling task. However, Jury provides a set of

equations that perform the determinant operation for the

matrix given by equation (62). Though these equations ease

the task, they only reduce the complexity slightly. The

-I ~•h , ' • • •. . :.••, .. `.•`•••• • ° `,•.. .. • -`.•
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equations are lengthy and notationally involved. Because

of the notational complexity in the equations, they were

re-derived and validated to ensure there were no typograph-

ical errors. There were not. For brevity, Jury's equa-

tions will not be reproduced in this document. However,

for those who are really interested, the computer code

included in this appendix contains a direct implementation

of Jury's equations (see Listing 1).

To determine UMhA) and V(hA), Jury's equations were

coded in a computer program written in Pascal. The coef-

ficients for L(z) and H(z) were coded as a function of the

program variable hA. The program prompts the user for a

value of hA, calculates the coefficients of L(z) and M(z)o

evaluates Jury's equations, and outputs the numerical value

of U(hA) and V(hA). Evaluation of UMhA) and V(hA) at six

distinct values of hA will provide enough data to uniquely

determine the coefficients of UMhA) and V(hA). To provide

a little extra confidence that the procedure was sound,

seven points were actually used knowing that if the numer-

ical data was valid, equivalent results would be obtained.

For the Adams-Bashforth integrator, the results were

UMhA) - 1 - 5.6736hA + 9.5833(hA) 2 - 6.25(hA) 3  (l1i)

VMhA) - -2.GhA - 3.333(hA) 2 + 7.6736(hA) 3

-9.5833(hA) 4 + 6.25(hA) 5  (1ll)

The question that now arises is how do these results

relate to the function needed to complete the analysis;
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that is, BSQD. Consider, that in steady-state, the state

covariance equation is of the form

E[4(1" 18E) - BSQ

which can be rewritten as

E~xj - & (102)

A comparison of equation (102) to equation (99) leads to

the plausible relationships

Ba - h2B2k4(hA)U(hA) (103)

and (I - 98) = N(hA)V(hA) (104)

* where N(hA) is a polynomial in hA that is common to both B6

* and (1 - 18). To determine N(hA) additional information is

required, such asAD

Derivation of,_ for the Adams-Bashforth Integrator

The discrete state transition matrix maps the states

ILi into the states I.J..l* Mathematically this is expressed

* as

XLgl = ]1D(h,6);LL (165)

where Li jL(ti) and ;L~ - IL(ti+h). In this derivation,

all that is known about the specific problem will be used.

Consider the general 4th order Adams-Bashforth for-

mula, where

1Lil - Li + h~aliL(L~ti) + 2 iltL)

+ a3L(Li-2,ti-2) + a4L(Li-.3.ti...3)] (106)

where al 55/24; a2 - -59/24; a3 - 37/24; and a4 =-9/24.
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To develop the specific problem, consider

1. Restricting the problem to linear time-invariant

differential systems given by

1(t) = Ax(t) + Bu(t) = L(z. t) (107)

2. The state transition matrix is independent of the

inputs, j(t). Therefore, let u.(t) = 0 for all t.

3. The continuous state transition matrix is given by

l(t2,t1) = EA(t 2 - tl) (18)

The derivation of the Adams-Bashforth formula makes

the assumption that the present and past derivatives are

known and are exact. The same assumption will be made in

this derivation. With this assumption, equations (107) and

(108) yield

L(xi. ti) = Alj

(tLi-l,t~l-) = AtLil = Af-Ah&i

L(Ki-2,ti-2) = ALi.-2 = AE-2Ah;L

L(1t-3,jtt- 3 ) - Ai-3 = A- 3AhLi

Evaluating equation (106) with these derivative functions,

results in

Li+1 = [I + olAh + a 2 AhC-h

+ 3 AhC- 2 Ah + u 4 AhE- 3 AhJxi (109)

Noting that equation (109) has the same structure as equa-

tion (115), it is concluded that

ID(hG) - I + alAh + c 2 AhE-Ah + a 3 AhE- 2 h + q4AhME 3 h (11g)

Notice that unlike the Runge-Kutta methods, the dis-

crete state transition matrix for the Adams-Bashforth inte-
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grator is an infinite series. The question arises, does

this state transition matrix approximate the Taylor series

form of I(h,I)? To answer this question, expand equation

(1ll) in a series form ,collect terms and compare it to

1(hI) . EhA

- I + Ah + (Ah) 2 /2 + (Ah)3 /6 + (Ah) 4 /24

+ (Ah) 5 /129 + .. , (ill)

Expanding the exponentials in equation (110) provides

E-h - I - hA + (hA) 2 /2 - (hA) 3 /6 + (hA) 4 /24 +

C-2hA I - 2hA + 2(hA) 2 - 4(hA) 3 /3 + 2(hA) 4 /3 +

E-3hA - I - 3hA + 9(hA) 2 /2 - 9(hA) 3 /2 + 27(hA) 4 /8 +

Evaluating equation (110) using these expansions and the

ai's given in equation (166), results in

ED(h,f) - I + Ah + (Ah) 2 /2 + (Ah) 3 /6 + (Ah)4/24
-49(ah)5/120 + ... (112)

A comparison of equation (112) to equation (111) shovs that

10 (h,) x 1(hG) with error on the order of h 5 . Vith AD in

hand, the Jury analysis can be completed.

Determination of M(hA) anN

The general form of N(hA) is assumed to be

M(hA) - g + IhA + 1 2 (hA) 2 + 13 (hA) 3 + ... (113) p
The %I coefficients in equation (113) can be computed di-

rectly from equation (104). Consider that

1 - N - -2hA - 2(hA) 2 - 4(hA) 3 /3 - 2(hA) 4 /3 + ... (114) I
Taking the product of equation (113) with equation (161)

and equating the resulting coefficients to the coefficients
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in equation (114) results in the following constraint equa-

tions

-2; = -2

-3.3333%g - 211 - -2

7.67361g - 3.333311 - 212 - -4/3

-9.58331 + 7.67361,1 3.333312 - 293 - -2/3

and so on. Solving for Ig through 13 results in

t(hA) - 1 - 2(hA)/3 + 5.61(hA) 2 - 16.379(hA) 3 + (115)

Solving for Ba in equation (113) results in

Ba - h 2 B2 (1 - 6.34hA + 18.98(hA) 2 - 6i.84(hA) 3 +...) (116)
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Listing 1.

PASCAL Program Used to Evaluate Jury's Equations

Program JuryDpeterminant;
CCalculates U~hA) and M~A) for the Adams-Bashforth
integrator. The coefficients 10 through 14 have been
replaced by ag through a4 to enhance readability)

var
hAa.af~l~a2,a3,a4,el~e2,e3,e4,e5.
alfal,al fa2,al fa3,aifa4,
mI~ml~m2,m3,m4,BI.1lB2,B3,B4 : real;
QfQiQ2DQ3,Q4,BQ,AQ : real;

begin
alfal :-55.0/24.0;
alfa2 :-5-9.9/24.0;
alfa3 :=37.0/24.9;
alfa4 :--9.0/24.9;

( Prompt User for input and Get It)
write(lInput hA 1); readln(hA);

( Define Coefficients)
of :- .9;
al :-alfal;
m2 :-alfa2;
m3 :-alfa3;
M4: alfa4;
al : 1.8;
al :--(1.9 O alfal'hA);
a2 :--alfa2*hA;
a3 :--alfa3*hA;
a4 :--alfa4*hA;

( Jury's Equations
el : a@ + a2;
e2 al +i a3;
e3 :a2 + a4;
e4 :-a@ + a4;
.5 :-al + a2 + a4;

BO :- 3*31 + ml'ml + m2*u2 + m3'm3 + m4*m4;
Si1 2.I*(m*Gmi + ml*m2 + m2'm3 + .3*m4);
B2 :-2.I'(mI'm2 + ml'm3 + m2'm4);
13 :m2.6'(mW'm3 + ml'm4);
14 :-2.f*ml*m4;

Of : aI'*(el'e4 - a3'e2) + a4*Cal'e2 - e3*e4);
01 :a aI*(ai*e4 - a2*a3) + a4*(al*a2 - a3*e4);
02 :-aI'Cal'e2 - a2'el) + a4*(a2*e3 - W3e2);
Q3 :-al*(al'e2 - e3*e4) - a2*(al*el - a3*e3)
+ a3*(e1'e4 - a3*e2);
04 :- aI*(e2*(al*a4 - aI'a3) + e5*(af*af - a4*a4))

+ (e2*e2 - e5*e5)*(al'al - al'a3 + Ca@ - a4)*(e4 -a2)
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Continuation of Listing 1.

soB is U(hA) and A0 is M~A))
BQ :- aU'3lO*Q - ag*B1*01 + aS*B2*02 -af*B3*03 + B4*04;
£0 :a ag*((ag*ag-a4*a4)*QU - (ag*al -a3*a4)*Ql

+ (af'a2 - a2*a4)*02 - Ca@*a3 - al'a4)*03);

( Output to terminal)
writeln(IVor hk - Ih)
writeln('Qg - ',091. 01 - '.01);
writeln('02 - '.02.' 03 - '.03.' 04 - ',04);
writeln('A0 - ',AO.' BO - 1B)

( Output to Printer
writeln( 1st);
writaln(lst.'For hA -Ih)
writeln(lst,'01 - '.06,' 01 - '.01);
writeln(lst,'02 - '.02.' 03 - ',03,1 04 -',04);
writeln~lat,'AO - '.AO,' B0 - 1B)
writein(Ist);
writeln( 1st);

end.

4k, .
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CODE FOR RANDOM NUMBER GENERATOR

USED IN SIMULATION
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Listing 2.

FORTRAN Code of Random Number Generator

with Gaussian Shaping Algorithm

REAL FUNCTION GAUSSN(SIGSEED)
C
C******* FOR GOOD RESULTS USE AN INITIAL SEED -824364364
C

INTEGER*4 SEED
GNOZZ-W.
DO 13 1-1,12

GNOIZ - GNOIZ + URAND(SEED)
10 CONTINUE

GAUSSU-SIG*(CGNOIZ-6. I)
RETURN
END

REAL FUNCTION URAND(SEED)
INTEGER*4 B2ElS,B2El6,NODLUSHIGH15.HIGH31,L0515,L.OUPRD,
& MULTI,* ULT2,*OVFLOU *SEED
DATA HULT1,HULT2/24112,26143/
DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/

HIGH15 - SEED/B2E16
LOVPRD - (SEED - HIGHIS*B2E16)*NULT1
LOUIS - L.OUPRD/B2EI6
HIGH131 - HIGH15*KULT1 + LOV15
OVFLOV - HIGH31/B2El5

SEED - ((LOVPRD -LOV15B'2El6) - MODLUS) +
& (HIGH31 -OVFLOU*B2El5)*B2El6) + OVFLOW
IF (SEED.LT.I) SEED - SEED + MODLUS

HIGH15B - SEED/B2E16
LOVPRD - (SEED - HIGH15*B2El6)*HULT2
LOV15 - LOUPRDIB2El6
HIGH31 = HIGH15*MULT2 + LOV15
OVFLOV - HIGH3l/B2E15

SEED = ((LOUPRD -LOU15*B2El6) - MODLUS) +
& (HIGH31 -OVFLOW*B2El5)*B2E16) + OVFLOW
IF CSEED.LT.I) SEED = SEED + MODLUS

URAND - FLOAT(2'(SEEDI256) + 1)/16777216.0
RETURN
END


